-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_args.py
41 lines (32 loc) · 1.43 KB
/
get_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
def get_args():
################################
# Setup Parameters and get args
################################
parser = argparse.ArgumentParser()
parser.add_argument('-dataset', default = 'cifar')
# Neural Network setting
parser.add_argument('-cout', type=int, default = 12)
parser.add_argument('-cfeat', type=int, default = 256)
# The transmitter setting
parser.add_argument('-distribute', default = False)
parser.add_argument('-res', default = True)
parser.add_argument('-diversity', default = True)
parser.add_argument('-adapt', default = True)
parser.add_argument('-Nt', default = 2)
parser.add_argument('-P1', default = 10.0)
parser.add_argument('-P2', default = 10.0)
parser.add_argument('-P1_rng', default = 4.0)
parser.add_argument('-P2_rng', default = 4.0)
# The receiver setting
parser.add_argument('-Nr', default = 2)
# training setting
parser.add_argument('-epoch', type=int, default = 400)
parser.add_argument('-lr', type=float, default = 1e-4)
parser.add_argument('-train_patience', type=int, default = 12)
parser.add_argument('-train_batch_size', type=int, default = 32)
parser.add_argument('-val_batch_size', type=int, default = 32)
parser.add_argument('-resume', default = False)
parser.add_argument('-path', default = 'models/')
args = parser.parse_args()
return args