-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtrain_mvs_nerf_finetuning_pl.py
325 lines (253 loc) · 14.4 KB
/
train_mvs_nerf_finetuning_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from opt import config_parser
from torch.utils.data import DataLoader
from data import dataset_dict
# models
from models import *
from renderer import *
from utils import *
from data.ray_utils import ray_marcher,ray_marcher_fine
import imageio
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer, loggers
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SL1Loss(nn.Module):
def __init__(self, levels=3):
super(SL1Loss, self).__init__()
self.levels = levels
self.loss = nn.SmoothL1Loss(reduction='mean')
def forward(self, depth_pred, depth_gt, mask=None):
if None == mask:
mask = depth_gt > 0
loss = self.loss(depth_pred[mask], depth_gt[mask]) * 2 ** (1 - 2)
return loss
class MVSSystem(LightningModule):
def __init__(self, args):
super(MVSSystem, self).__init__()
self.args = args
self.args.feat_dim = 8+3*4
self.args.dir_dim = 3
self.idx = 0
self.loss = SL1Loss()
# Create nerf model
self.render_kwargs_train, self.render_kwargs_test, start, self.grad_vars = create_nerf_mvs(args, use_mvs=True, dir_embedder=False, pts_embedder=True)
filter_keys(self.render_kwargs_train)
# Create mvs model
self.MVSNet = self.render_kwargs_train['network_mvs']
self.render_kwargs_train.pop('network_mvs')
dataset = dataset_dict[self.args.dataset_name]
self.train_dataset = dataset(args, split='train')
self.val_dataset = dataset(args, split='val')
self.init_volume()
self.grad_vars += list(self.volume.parameters())
def init_volume(self):
self.imgs, self.proj_mats, self.near_far_source, self.pose_source = self.train_dataset.read_source_views(device=device)
ckpts = torch.load(args.ckpt)
if 'volume' not in ckpts.keys():
self.MVSNet.train()
with torch.no_grad():
volume_feature, _, _ = self.MVSNet(self.imgs, self.proj_mats, self.near_far_source, pad=args.pad, lindisp=args.use_disp)
else:
volume_feature = ckpts['volume']['feat_volume']
print('load ckpt volume.')
self.imgs = self.unpreprocess(self.imgs)
# project colors to a volume
self.density_volume = None
if args.use_color_volume or args.use_density_volume:
D,H,W = volume_feature.shape[-3:]
intrinsic, c2w = self.pose_source['intrinsics'][0].clone(), self.pose_source['c2ws'][0]
intrinsic[:2] /= 4
vox_pts = get_ptsvolume(H-2*args.pad,W-2*args.pad,D, args.pad, self.near_far_source, intrinsic, c2w)
self.color_feature = build_color_volume(vox_pts, self.pose_source, self.imgs, with_mask=True).view(D,H,W,-1).unsqueeze(0).permute(0, 4, 1, 2, 3) # [N,D,H,W,C]
if args.use_color_volume:
volume_feature = torch.cat((volume_feature, self.color_feature),dim=1) # [N,C,D,H,W]
if args.use_density_volume:
self.vox_pts = vox_pts
else:
del vox_pts
self.volume = RefVolume(volume_feature.detach()).to(device)
del volume_feature
def update_density_volume(self):
with torch.no_grad():
network_fn = self.render_kwargs_train['network_fn']
network_query_fn = self.render_kwargs_train['network_query_fn']
D,H,W = self.volume.feat_volume.shape[-3:]
features = torch.cat((self.volume.feat_volume, self.color_feature), dim=1).permute(0,2,3,4,1).reshape(D*H,W,-1)
self.density_volume = render_density(network_fn, self.vox_pts, features, network_query_fn).reshape(D,H,W)
del features
def decode_batch(self, batch):
rays = batch['rays'].squeeze() # (B, 8)
rgbs = batch['rgbs'].squeeze() # (B, 3)
return rays, rgbs
def unpreprocess(self, data, shape=(1,1,3,1,1)):
# to unnormalize image for visualization
device = data.device
mean = torch.tensor([-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225]).view(*shape).to(device)
std = torch.tensor([1 / 0.229, 1 / 0.224, 1 / 0.225]).view(*shape).to(device)
return (data - mean) / std
def forward(self):
return
def configure_optimizers(self):
self.optimizer = torch.optim.Adam(self.grad_vars, lr=self.args.lrate, betas=(0.9, 0.999))
scheduler = get_scheduler(self.args, self.optimizer)
return [self.optimizer], [scheduler]
def get_lr(self):
for param_group in self.optimizer.param_groups:
return param_group['lr']
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=8,
batch_size=args.batch_size,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=1,
batch_size=1,
pin_memory=True)
def training_step(self, batch, batch_nb):
rays, rgbs_target = self.decode_batch(batch)
if args.use_density_volume and 0 == self.global_step%200:
self.update_density_volume()
xyz_coarse_sampled, rays_o, rays_d, z_vals = ray_marcher(rays, N_samples=args.N_samples,
lindisp=args.use_disp, perturb=args.perturb)
# Converting world coordinate to ndc coordinate
H,W = self.imgs.shape[-2:]
inv_scale = torch.tensor([W - 1, H - 1]).to(device)
w2c_ref, intrinsic_ref = self.pose_source['w2cs'][0], self.pose_source['intrinsics'][0]
xyz_NDC = get_ndc_coordinate(w2c_ref, intrinsic_ref, xyz_coarse_sampled, inv_scale, near=self.near_far_source[0],far=self.near_far_source[1], pad=args.pad, lindisp=args.use_disp)
# important sampleing
if self.density_volume is not None and args.N_importance > 0:
xyz_coarse_sampled, rays_o, rays_d, z_vals = ray_marcher_fine(rays, self.density_volume, z_vals, xyz_NDC,
N_importance=args.N_importance)
xyz_NDC = get_ndc_coordinate(w2c_ref, intrinsic_ref, xyz_coarse_sampled, inv_scale,
near=self.near_far_source[0], far=self.near_far_source[1], pad=args.pad, lindisp=args.use_disp)
# rendering
rgbs, disp, acc, depth_pred, alpha, extras = rendering(args, self.pose_source, xyz_coarse_sampled, xyz_NDC, z_vals, rays_o, rays_d,
self.volume, self.imgs, **self.render_kwargs_train)
log, loss = {}, 0
if 'rgb0' in extras:
img_loss0 = img2mse(extras['rgb0'], rgbs_target)
loss = loss + img_loss0
psnr0 = mse2psnr2(img_loss0.item())
self.log('train/PSNR0', psnr0.item(), prog_bar=True)
################## rendering #####################
if self.args.with_rgb_loss:
img_loss = img2mse(rgbs, rgbs_target)
loss += img_loss
psnr = mse2psnr2(img_loss.item())
with torch.no_grad():
self.log('train/loss', loss, prog_bar=True)
self.log('train/img_mse_loss', img_loss.item(), prog_bar=False)
self.log('train/PSNR', psnr.item(), prog_bar=True)
# if self.global_step == 3999 or self.global_step == 9999:
# self.save_ckpt(f'{self.global_step}')
return {'loss':loss}
def validation_step(self, batch, batch_nb):
self.MVSNet.train()
rays, img = self.decode_batch(batch)
img = img.cpu() # (H, W, 3)
# mask = batch['mask'][0]
N_rays_all = rays.shape[0]
################## rendering #####################
keys = ['val_psnr_all']
log = init_log({}, keys)
with torch.no_grad():
rgbs, depth_preds = [],[]
for chunk_idx in range(N_rays_all//args.chunk + int(N_rays_all%args.chunk>0)):
xyz_coarse_sampled, rays_o, rays_d, z_vals = ray_marcher(rays[chunk_idx*args.chunk:(chunk_idx+1)*args.chunk],
N_samples=args.N_samples, lindisp=args.use_disp)
# Converting world coordinate to ndc coordinate
H, W = img.shape[:2]
inv_scale = torch.tensor([W - 1, H - 1]).to(device)
w2c_ref, intrinsic_ref = self.pose_source['w2cs'][0], self.pose_source['intrinsics'][0].clone()
intrinsic_ref[:2] *= args.imgScale_test/args.imgScale_train
xyz_NDC = get_ndc_coordinate(w2c_ref, intrinsic_ref, xyz_coarse_sampled, inv_scale,
near=self.near_far_source[0], far=self.near_far_source[1], pad=args.pad*args.imgScale_test, lindisp=args.use_disp)
# important sampleing
if self.density_volume is not None and args.N_importance > 0:
xyz_coarse_sampled, rays_o, rays_d, z_vals = ray_marcher_fine(rays[chunk_idx*args.chunk:(chunk_idx+1)*args.chunk],
self.density_volume, z_vals,xyz_NDC,N_importance=args.N_importance)
xyz_NDC = get_ndc_coordinate(w2c_ref, intrinsic_ref, xyz_coarse_sampled, inv_scale,
near=self.near_far_source[0], far=self.near_far_source[1],pad=args.pad, lindisp=args.use_disp)
# rendering
rgb, disp, acc, depth_pred, alpha, extras = rendering(args, self.pose_source, xyz_coarse_sampled,
xyz_NDC, z_vals, rays_o, rays_d,
self.volume, self.imgs,
**self.render_kwargs_train)
rgbs.append(rgb.cpu());depth_preds.append(depth_pred.cpu())
rgbs, depth_r = torch.clamp(torch.cat(rgbs).reshape(H, W, 3),0,1), torch.cat(depth_preds).reshape(H, W)
img_err_abs = (rgbs - img).abs()
log['val_psnr_all'] = mse2psnr(torch.mean(img_err_abs ** 2))
depth_r, _ = visualize_depth(depth_r, self.near_far_source)
self.logger.experiment.add_images('val/depth_gt_pred', depth_r[None], self.global_step)
img_vis = torch.stack((img, rgbs, img_err_abs.cpu()*5)).permute(0,3,1,2)
self.logger.experiment.add_images('val/rgb_pred_err', img_vis, self.global_step)
os.makedirs(f'runs_fine_tuning/{self.args.expname}/{self.args.expname}/',exist_ok=True)
img_vis = torch.cat((img,rgbs,img_err_abs*10,depth_r.permute(1,2,0)),dim=1).numpy()
imageio.imwrite(f'runs_fine_tuning/{self.args.expname}/{self.args.expname}/{self.global_step:08d}_{self.idx:02d}.png', (img_vis*255).astype('uint8'))
self.idx += 1
return log
def validation_epoch_end(self, outputs):
if self.args.with_depth:
mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
mask_sum = torch.stack([x['mask_sum'] for x in outputs]).sum()
# mean_d_loss_l = torch.stack([x['val_depth_loss_l'] for x in outputs]).mean()
mean_d_loss_r = torch.stack([x['val_depth_loss_r'] for x in outputs]).mean()
mean_abs_err = torch.stack([x['val_abs_err'] for x in outputs]).sum() / mask_sum
mean_acc_1mm = torch.stack([x[f'val_acc_{self.eval_metric[0]}mm'] for x in outputs]).sum() / mask_sum
mean_acc_2mm = torch.stack([x[f'val_acc_{self.eval_metric[1]}mm'] for x in outputs]).sum() / mask_sum
mean_acc_4mm = torch.stack([x[f'val_acc_{self.eval_metric[2]}mm'] for x in outputs]).sum() / mask_sum
self.log('val/d_loss_r', mean_d_loss_r, prog_bar=False)
self.log('val/PSNR', mean_psnr, prog_bar=False)
self.log('val/abs_err', mean_abs_err, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[0]}mm', mean_acc_1mm, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[1]}mm', mean_acc_2mm, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[2]}mm', mean_acc_4mm, prog_bar=False)
mean_psnr_all = torch.stack([x['val_psnr_all'] for x in outputs]).mean()
self.log('val/PSNR_all', mean_psnr_all, prog_bar=True)
return
def save_ckpt(self, name='latest'):
save_dir = f'runs_fine_tuning/{self.args.expname}/ckpts/'
os.makedirs(save_dir, exist_ok=True)
path = f'{save_dir}/{name}.tar'
ckpt = {
'global_step': self.global_step,
'network_fn_state_dict': self.render_kwargs_train['network_fn'].state_dict(),
'volume': self.volume.state_dict(),
'network_mvs_state_dict': self.MVSNet.state_dict()}
if self.render_kwargs_train['network_fine'] is not None:
ckpt['network_fine_state_dict'] = self.render_kwargs_train['network_fine'].state_dict()
torch.save(ckpt, path)
print('Saved checkpoints at', path)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
args = config_parser()
system = MVSSystem(args)
checkpoint_callback = ModelCheckpoint(os.path.join(f'runs_fine_tuning/{args.expname}/ckpts/','{epoch:02d}'),
monitor='val/PSNR',
mode='max',
save_top_k=0)
logger = loggers.TestTubeLogger(
save_dir="runs_fine_tuning",
name=args.expname,
debug=False,
create_git_tag=False
)
args.num_gpus, args.use_amp = 1, False
trainer = Trainer(max_epochs=args.num_epochs,
checkpoint_callback=checkpoint_callback,
logger=logger,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=args.num_gpus,
distributed_backend='ddp' if args.num_gpus > 1 else None,
num_sanity_val_steps=1, #if args.num_gpus > 1 else 5,
# check_val_every_n_epoch = max(system.args.num_epochs//system.args.N_vis,1),
val_check_interval=500,
benchmark=True,
precision=16 if args.use_amp else 32,
amp_level='O1')
trainer.fit(system)
system.save_ckpt()