-
Notifications
You must be signed in to change notification settings - Fork 2.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SUPPORT] HoodieSparkSessionExtension and IcebergSparkSessionExtensions conflict #12808
Comments
@pravin1406 We can only set one value for this. You may need separate spark sessions if you want to do so |
Hi @pravin1406 As Aditya mentioned in an earlier comment, we cannot execute procedures for two different table formats in a single Spark session. We can only execute one SQL procedure per Spark session. If we attempt to use multiple procedures, we will encounter a similar type of exception. spark-sql (default)> CALL iceberg_catalog.system.rewrite_data_files('default.iceberg_tbl');
procedure: rewrite_data_files is not exists Example code: spark-sql \
--conf 'spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar' \
--conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions,org.apache.spark.sql.hudi.HoodieSparkSessionExtension \
--conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog \
--conf spark.sql.catalog.iceberg_catalog=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.iceberg_catalog.type=hive CREATE TABLE iceberg_catalog.default.iceberg_tbl (id bigint, data string) USING iceberg;
INSERT INTO iceberg_catalog.default.iceberg_tbl VALUES (1, 'a'), (2, 'b'), (3, 'c');
SELECT * FROM iceberg_catalog.default.iceberg_tbl;
CALL iceberg_catalog.system.rewrite_data_files('default.iceberg_tbl');
CREATE TABLE hudi_tbl (
ts BIGINT,
uuid STRING,
rider STRING,
driver STRING,
fare DOUBLE,
city STRING
) USING HUDI
PARTITIONED BY (city);
INSERT INTO hudi_tbl
VALUES
(1695159649087,'334e26e9-8355-45cc-97c6-c31daf0df330','rider-A','driver-K',19.10,'san_francisco'),
(1695091554788,'e96c4396-3fad-413a-a942-4cb36106d721','rider-C','driver-M',27.70 ,'san_francisco'),
(1695046462179,'9909a8b1-2d15-4d3d-8ec9-efc48c536a00','rider-D','driver-L',33.90 ,'san_francisco'),
(1695332066204,'1dced545-862b-4ceb-8b43-d2a568f6616b','rider-E','driver-O',93.50,'san_francisco'),
(1695516137016,'e3cf430c-889d-4015-bc98-59bdce1e530c','rider-F','driver-P',34.15,'sao_paulo' ),
(1695376420876,'7a84095f-737f-40bc-b62f-6b69664712d2','rider-G','driver-Q',43.40 ,'sao_paulo' ),
(1695173887231,'3eeb61f7-c2b0-4636-99bd-5d7a5a1d2c04','rider-I','driver-S',41.06 ,'chennai' ),
(1695115999911,'c8abbe79-8d89-47ea-b4ce-4d224bae5bfa','rider-J','driver-T',17.85,'chennai');
SELECT * FROM hudi_tbl;
call show_commits(table => 'hudi_tbl', limit => 10); |
Shouldn't one format's parser delegate it to other format's parser in case a procedure is not available to be executed. Also i see iceberg has a PR merged recently to somehow handle this, can be wrong. I think hudi should also take care of this. I tested the PR above seems it's working...by keeping iceberg extension after hudi extension. |
Hi @pravin1406 I will try to discuss about this feature enhancement with hudi eng team. |
@pravin1406 Its little tricky to use both within same spark session , do you have any ideas here? |
I can think of implementing it exactly how that iceberg PR has check if the command is hudi command based on existing procedures in hudi. |
Hi @pravin1406 Thanks a lot for your interest. Can you please create a jira and let us know if you need any help to start? |
I have a use case where i may have to call spark procedures or metadata queries on hudi tables as well as iceberg tables within same spark job.
I have to run all my uses cases from spark sql...so can't call java api's directly in this case, hence using sql procedures.
But when i set
spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension,org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
It does not matter what value i set to spark_catalog. None of the combination work.
i have tried keeping hoodie extension last and then set spark_catalog to below..but still no help.
spark.sql.catalog.spark_catalog = org.apache.iceberg.spark.SparkSessionCatalog
spark.sql.catalog.spark_catalog.type = hive
spark.sql.catalog.spark_catalog.uri = thrift://localhost:9083
Only iceberg procedure works...if i reverse the order of extension only the latter extension procedures works.
I get following error
org.apache.spark.sql.catalyst.analysis.NoSuchProcedureException: Procedure default.show_commits not found
and
org.apache.spark.sql.AnalysisException: procedure: rewrite_data_files is not exists
Is there a way to make both extension work? or even when i add more extensions which i do intend to.
Steps to reproduce
Run spark-shell with
following 2 properties set
spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension,org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.jars=iceberg-spark-runtime-3.2_2.12-1.4.3.2.jar,hudi-spark3.2-bundle_2.12-0.14.1.4.jar
Expected behavior
A clear and concise description of what you expected to happen.
Environment Description
Hudi version : 0.14.1
Spark version : 3.3.2
Hadoop version : 3.1.3
Storage (HDFS/S3/GCS..) : HDFS
Running on Docker? (yes/no) : no
Sample stacktrace in both cases
scala> spark.sql("call show_commits(table => 'default.18nove_try1_rt', limit => 100)").show(false) ANTLR Tool version 4.9.3 used for code generation does not match the current runtime version 4.8ANTLR Runtime version 4.9.3 used for parser compilation does not match the current runtime version 4.8ANTLR Tool version 4.9.3 used for code generation does not match the current runtime version 4.8ANTLR Runtime version 4.9.3 used for parser compilation does not match the current runtime version 4.8 org.apache.spark.sql.catalyst.analysis.NoSuchProcedureException: Procedure default.show_commits not found spark.sql.catalyst.analysis.NoSuchProcedureException: Procedure default.show_commits not found at org.apache.iceberg.spark.BaseCatalog.loadProcedure(BaseCatalog.java:57) at org.apache.iceberg.spark.SparkSessionCatalog.loadProcedure(SparkSessionCatalog.java:56) at org.apache.spark.sql.catalyst.analysis.ResolveProcedures$$anonfun$apply$1.applyOrElse(ResolveProcedures.scala:47) at org.apache.spark.sql.catalyst.analysis.ResolveProcedures$$anonfun$apply$1.applyOrElse(ResolveProcedures.scala:45) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$2(AnalysisHelper.scala:170) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$1(AnalysisHelper.scala:170) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning(AnalysisHelper.scala:168) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning$(AnalysisHelper.scala:164) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsWithPruning(AnalysisHelper.scala:99) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsWithPruning$(AnalysisHelper.scala:96) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators(AnalysisHelper.scala:76) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators$(AnalysisHelper.scala:75) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.analysis.ResolveProcedures.apply(ResolveProcedures.scala:45) at org.apache.spark.sql.catalyst.analysis.ResolveProcedures.apply(ResolveProcedures.scala:41) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:211) at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) at scala.collection.immutable.List.foldLeft(List.scala:91) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:208) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:200) at scala.collection.immutable.List.foreach(List.scala:431) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200) at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:215) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:209) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:172) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:179) at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)
scala> spark.sql("CALL spark_catalog.system.rewrite_data_files(table => 'iceberg_staging.iceberg_6nov_try1', options => map('max-file-size-bytes','1073741824'))").show(false) org.apache.spark.sql.AnalysisException: procedure: rewrite_data_files is not exists at org.apache.spark.sql.hudi.analysis.ResolveImplementations.loadProcedure(HoodieAnalysis.scala:472) at org.apache.spark.sql.hudi.analysis.ResolveImplementations.$anonfun$apply$3(HoodieAnalysis.scala:436) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323) at org.apache.spark.sql.hudi.analysis.ResolveImplementations.apply(HoodieAnalysis.scala:405) at org.apache.spark.sql.hudi.analysis.ResolveImplementations.apply(HoodieAnalysis.scala:401) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:211) at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) at scala.collection.immutable.List.foldLeft(List.scala:91) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:208) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:200) at scala.collection.immutable.List.foreach(List.scala:431) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200) at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:215) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:209) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:172) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:179) at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:179) at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:193) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330) at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:192) at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:88) at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:196) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:196) at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:88) at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:86) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:78)
The text was updated successfully, but these errors were encountered: