-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllama_7B_LoRA_RST.sh
73 lines (65 loc) · 2.26 KB
/
llama_7B_LoRA_RST.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
CUDA_VISIBLE_DEVICES=$4 python finetune.py \
--base_model 'yahma/llama-7b-hf' \
--data_path 'commonsense_170k.json' \
--output_dir $3 \
--batch_size 16 --micro_batch_size 16 --num_epochs 3 \
--learning_rate 2e-4 --cutoff_len 256 --val_set_size 120 \
--eval_step 80 --save_step 80 --adapter_name lora \
--target_modules '["q_proj", "k_proj", "v_proj", "up_proj", "down_proj"]' \
--lora_r $1 --lora_alpha $2 --use_rst
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset boolq \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/boolq.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset piqa \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/piqa.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset social_i_qa \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/social_i_qa.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset hellaswag \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/hellaswag.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset winogrande \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/winogrande.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset ARC-Challenge \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/ARC-Challenge.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset ARC-Easy \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/ARC-Easy.txt
CUDA_VISIBLE_DEVICES=$4 python commonsense_evaluate.py \
--model LLaMA-7B \
--adapter LoRA \
--dataset openbookqa \
--base_model 'yahma/llama-7b-hf' \
--batch_size 1 \
--lora_weights $3|tee -a $3/openbookqa.txt