-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcofiCostFunc.m
24 lines (20 loc) · 930 Bytes
/
cofiCostFunc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
num_features, lambda)
%COFICOSTFUNC Collaborative filtering cost function
% [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ...
% num_features, lambda) returns the cost and gradient for the
% collaborative filtering problem.
%
% Unfold the U and W matrices from params
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features);
J = 1/2 * sum(sum((R.* ((X*Theta') - Y)).^2));
X_grad = (R .* (X*Theta' - Y)) * Theta;
Theta_grad = (R .* (X*Theta' - Y))' * X;
% With regularization
J = J + lambda/2 * (sum(sum(Theta.^2)) + sum(sum(X.^2)));
X_grad = X_grad + lambda * X;
Theta_grad = Theta_grad + lambda * Theta;
grad = [X_grad(:); Theta_grad(:)];
end