-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataviz.Rmd
586 lines (418 loc) · 12.9 KB
/
dataviz.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
---
title: "Data Visualization"
subtitle: "Lesser known intro"
author: "Amy Tzu-Yu Chen"
date: "2020-06-27"
output:
xaringan::moon_reader:
lib_dir: libs
nature:
highlightStyle: github
highlightLines: true
countIncrementalSlides: true
ratio: "16:9"
---
# About Me
- UCLA'16, Statistics
- Data Scientist at System1 & Computational Linguistics MS Student at University of Washington
- Happy R user since STAT 20
- Find me at amy17519 @ Twitter, Github, and LinkedIn
---
# Why is this a "lesser known" intro
You can easily find tutorials if you google "how to use "blah blah" visualization library"
<br />
<br />
(🤭 and just copy and paste code! It works!)
--
You can even build amazing graphs *_without coding_* using Tableau etc
<br />
<br />
(🤭 and they look nice! Nicer than my ggplots sometimes!)
--
<br />
<br />
<br />
🤔... However, having a deeper understanding on visualization tools and process is a great asset for data practitioners
--
🤩 Know behind-the-library design philosophy ➡️ helps you understand a diverse range of graphics and powerful tools faster
--
🤩 Practice visualization process ➡️ inform yourself, then educate your audience
---
# Agenda
- Grammar of Graphics
- Strategy
- Visualization Process
- Making *_Exploratory_* Graphs
- Making *_Confirmatory_* Graphs
- Toolbox
- Resources
---
class: center, middle, inverse
## Grammar of Graphics
---
# The Beauty of Grammar of Graphics
In languages, grammar keeps things in order.
<br />
--
If you know some grammar, you don't need to know all the vocabularies to speak.
<br />
--
If you know some grammar of graphics, you don't need to know all coding syntax or graph types to make an informative graph
---
# History - Grammar of Graphics
.pull-left[
- Late 1990s: the concept was introduced by Leland Wilkinson. See [The Grammar of Graphics 2nd Edition, 2005](https://www.springer.com/gp/book/9780387245447).
- 2000s: Hadley Wickham built the R visualization library ggplot2 based on grammar of graphics with modifications. He also published [A Layered Grammar of Graphics, 2010](http://vita.had.co.nz/papers/layered-grammar.html).
- Many applications in visualization libraries/projects in different languages.
]
.pull-right[
<img src="img/01grammar-mapping2.png" width=60%>
]
---
# Grammar of Graphics - Components of Grammar
.center[
<img src="img/01grammar-of-graphics2.png" width = 60% height = 60%>
]
---
# Example Data
```{r, eval = TRUE, include = FALSE, warning = FALSE, message = FALSE}
library(dslabs)
library(data.table)
library(ggplot2)
data("us_contagious_diseases")
df_measles <- subset(us_contagious_diseases, disease == "Measles")
setDT(df_measles)
CA_Measles <- subset(df_measles, state == "California" & disease == "Measles")
```
```{r, eval = TRUE, include = TRUE}
# df_measles comes from dataset dslabs::us_contagious_diseases
str(df_measles)
```
```{r, eval = TRUE, include = TRUE}
head(df_measles)
```
---
# Grammar of Graphics
.left-column[
- Data
- Aesthestics
- Geometry
- Stats
- Facets
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
# Annual reported Measles cases in California
ggplot(data = CA_Measles, aes(x = year, y = count)) +
geom_line()
```
---
# Grammar of Graphics
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
# Annual reported Measles cases in California
ggplot(data = CA_Measles, aes(x = year, y = count)) +
geom_line()
```
---
# Grammar of Graphics
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
.right-column[
#### Data, Aesthestics(for input data), and Geometry are required to make a minimal graph
```r
* ggplot(aes(x = year, y = count)) +
* geom_line()
* ## Error: `data` must be a data frame.... 🤔
ggplot(data = CA_Measles) +
geom_line()
## Error in order(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, :
## argument 3 is not a vector
ggplot(data = CA_Measles, aes(x = year, y = count))
# No error, but you will get an empty ggplot canvas
```
]
---
# Grammar of Graphics
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
.right-column[
#### Data, Aesthestics(for input data), and Geometry are required to make a minimal graph
```r
ggplot(aes(x = year, y = count)) +
geom_line()
## Error: `data` must be a data frame.... 🤔
* ggplot(data = CA_Measles) +
* geom_line()
* ## Error in order(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, :
* ## argument 3 is not a vector
ggplot(data = CA_Measles, aes(x = year, y = count))
# No error, but you will get an empty ggplot canvas
```
]
---
# Grammar of Graphics
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
.right-column[
#### Data, Aesthestics(for input data), and Geometry are required to make a minimal graph
```r
ggplot(aes(x = year, y = count)) +
geom_line()
## Error: `data` must be a data frame.... 🤔
ggplot(data = CA_Measles) +
geom_line()
## Error in order(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, :
## argument 3 is not a vector
* ggplot(data = CA_Measles, aes(x = year, y = count))
* # No error, but you will get an empty ggplot canvas
```
]
---
# Different Library, Similar Syntax, Same Basic Components
```r
library(plotly)
plot_ly(CA_Measles, x = ~year, y = ~count, type = 'scatter', mode = 'lines')
library(highcharter)
hchart(CA_Measles, 'line', hcaes(x = year, y = count)
```
---
class: center, middle, inverse
## Strategy
---
.center[
<img src="img/03choosing-a-good-chart-09.png", width = 80%, height = 80%>
]
---
## Bottomline
- Focus on showing data patterns using an appropriate ~~fancy~~ graph
- *_Informativeness_* >> Clarity >> Aesthestics
- Data visualization could be subjective, but
<blockquote>
The greatest value of a picture is when it forces us to notice what we never expected to see
.right[-- <cite>John W. Tukey</cite>]
</blockquote>
-- as opposed to what we wanted to confirm.
---
class: center, middle, inverse
## Visualization Process
---
# Making Exploratory Graphs
<blockquote>
to be able to say that we looked one layer deeper, and found nothing, is a definite step forward -- though not as far as to be able to say that we looked deeper and found thus-and-suck
.right[-- <cite>John W. Tukey</cite>]
</blockquote>
- Make LOTS of exploratory graphs, and only present those that can convince yourself and guide the audience through your data analysis
- In this stage, we only care about *_informativeness_*! We will worry about Clarity and Aesthestics in next stage.
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
ggplot(data = CA_Measles, aes(x = year, y = count)) +
geom_line()
```
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
ggplot(data = df_measles, aes(x = year, y = count)) +
geom_line() +
facet_wrap(~state)
```
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- Facets
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
df_avg_pop <- df_measles[, .(mean_pop = mean(population, na.rm = TRUE)), state]
ggplot(data = df_avg_pop, aes(x = state, y = mean_pop)) +
geom_col()
```
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
ca_wy_noweight <- ggplot(df_measles[state %in% c("California", "Wyoming")],
aes(x = year, y = count)) +
geom_line() +
facet_wrap(~state)
ca_wy_weighted <- ggplot(df_measles[state %in% c("California", "Wyoming")],
aes(x = year, y = count / (population / 1000000))) +
geom_line() +
facet_wrap(~state)
```
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
library(patchwork)
ca_wy_noweight / ca_wy_weighted
```
---
# Making Exploratory Graphs - Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- Coordinate
- Theme
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '400px'}
ggplot(data = df_measles, aes(x = year, y = count / (population / 1000000))) +
geom_line() +
facet_wrap(~state)
```
---
# Making Confirmatory Graphs
- Few exploratory graphs need to become confirmatory graphs
- Key findings or evidence in your data analysis that help draw conclusions or inform modeling decisions
- Now we have the information we want to share, we can work on Clarity and Aesthestics
---
# Making Confirmatory Graphs -- Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- **Coordinate**
- **Theme**
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '350px'}
ggplot(data = df_avg_pop, aes(x = reorder(state, mean_pop), y = mean_pop)) +
geom_col() + coord_flip() +
ggtitle("Average US State Population, 1928-2002") +
scale_y_continuous(labels = scales::comma) +
xlab("Avg Population") + ylab("State") +
theme_bw()
```
---
# Making Confirmatory Graphs -- Measles
.left-column[
- **Data**
- **Aesthestics**
- **Geometry**
- Stats
- **Facets**
- **Coordinate**
- **Theme**
]
```{r, eval = TRUE, echo = TRUE, warning = FALSE, message = FALSE, out.width = '350px'}
ggplot(data = df_measles, aes(x = year, y = count / (population / 1000000))) +
geom_line() + facet_wrap(~state) +
ggtitle("Measle Cases per Million People by State, 1928-2002") +
scale_y_continuous(labels = scales::comma) +
xlab("State") + ylab("Cases/1m Population") +
theme_bw()
```
---
class: center, middle, inverse
## Toolbox
---
# Visualization Toolbox
- Lots of [ggplot](https://ggplot2.tidyverse.org) extensions
- [patchwork](https://github.com/thomasp85/patchwork) - arrange and stitch graphs together
- [gganimate](https://gganimate.com/articles/gganimate.html) - make animated ggplots
- [ggdendro](https://cran.r-project.org/web/packages/ggdendro/vignettes/ggdendro.html) - make dendrogram in ggplot
- [ggrepel](https://cran.r-project.org/web/packages/ggrepel/vignettes/ggrepel.html) - display labels nicely
- [ggradar](https://github.com/ricardo-bion/ggradar) - radar chart
- [ggmap](https://github.com/dkahle/ggmap) - draw maps
- [cowplot](https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html) - arrange graphs to be publication ready
- [ggiraph](http://davidgohel.github.io/ggiraph/index.html) - make ggplot interactive
- [geofacet](https://hafen.github.io/geofacet/) - facet on a map
- Color Palettes
- [r-color-palettes](https://github.com/EmilHvitfeldt/r-color-palettes)
- [Wes Anderson Palettes](https://github.com/karthik/wesanderson)
- [html color codes](https://htmlcolorcodes.com/resources/best-color-palette-generators/) - if you really want to customize
---
# Visualization Toolbox
- [Highcharter](http://jkunst.com/highcharter/)
- [Dygraph](https://rstudio.github.io/dygraphs/)
- [Plotly](https://github.com/ropensci/plotly)
- [leaflet](https://rstudio.github.io/leaflet/) - Interactive maps
- [Altair](https://github.com/altair-viz/altair) - Can show distribution in the highlighted region - Python only
---
class: center, middle, inverse
## Resources
---
# Tutorials, Videos, Books, and Paper
- Liz Sander - [Telling stories with data using the grammar of graphics](https://codewords.recurse.com/issues/six/telling-stories-with-data-using-the-grammar-of-graphics)
- Hadley Wickham - [A Layered Grammar of Graphics](https://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf)
- Thomas Lin Pedersen - [ggplot2 Workshop](https://www.youtube.com/watch?v=h29g21z0a68) (video, 4.5hr tutorials with latest dev updates)
- John W. Tukey - [Exploratory Data Analysis, Preface](https://books.google.com/books/about/Exploratory_Data_Analysis.html?id=UT9dAAAAIAAJ&source=kp_book_description)
- Dipanjan (DJ) Sarkar - [A Comprehensive Guide to the Grammar of Graphics for Effective Visualization of Multi-dimensional Data](https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149)
---
class: center, middle, inverse
# Thanks!
Slides created using the R package [**xaringan**](https://github.com/yihui/xaringan).