-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbodypix_functions.py
80 lines (70 loc) · 3.64 KB
/
bodypix_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2020 Alexander Schier
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the “Software”),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# This file is a python rewrite of the typescript implementation in
# https://github.com/tensorflow/tfjs-models/blob/master/body-pix/src/util.ts
import tensorflow as tf
import numpy as np
def remove_padding_and_resize_back(resized_and_padded, original_height, original_width,
padT, padB, padL, padR):
return tf.squeeze(tf.image.crop_and_resize(resized_and_padded,
[[padT / (original_height + padT + padB - 1.0),
padL / (original_width + padL + padR - 1.0),
(padT + original_height - 1.0) / (original_height + padT + padB - 1.0),
(padL + original_width - 1.0) / (original_width + padL + padR - 1.0)]],
[0], [original_height, original_width]
), [0])
def scale_and_crop_to_input_tensor_shape(tensor,
input_tensor_height, input_tensor_width,
padT, padB, padL, padR,
apply_sigmoid_activation):
in_resized_and_padded = tf.image.resize_with_pad(tensor,
input_tensor_height, input_tensor_width,
method=tf.image.ResizeMethod.BILINEAR)
if apply_sigmoid_activation:
in_resized_and_padded = tf.sigmoid(in_resized_and_padded)
return remove_padding_and_resize_back(in_resized_and_padded,
input_tensor_height, input_tensor_width, padT, padB, padL, padR)
def is_valid_input_resolution(resolution, output_stride):
return (resolution - 1) % output_stride == 0;
def to_valid_input_resolution(input_resolution, output_stride):
if is_valid_input_resolution(input_resolution, output_stride):
return input_resolution
return int(np.floor(input_resolution / output_stride) * output_stride + 1)
def to_input_resolution_height_and_width(internal_resolution, output_stride, input_height, input_width):
return (to_valid_input_resolution(input_height * internal_resolution, output_stride),
to_valid_input_resolution(input_width * internal_resolution, output_stride))
def to_mask_tensor(segment_scores, threshold):
return tf.math.greater(segment_scores, tf.constant(threshold))
def calc_padding(input_tensor, targetH, targetW):
height, width = input_tensor.shape[:2]
target_aspect = targetW / targetH;
aspect = width / height;
padT, padB, padL, padR = 0, 0, 0, 0;
if aspect < target_aspect:
padT = 0
padB = 0
padL = round(0.5 * (target_aspect * height - width))
padR = round(0.5 * (target_aspect * height - width))
else:
padT = round(0.5 * ((1.0 / target_aspect) * width - height))
padB = round(0.5 * ((1.0 / target_aspect) * width - height))
padL = 0
padR = 0
return padT, padB, padL, padR