-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegmentationtodicomrt.py
executable file
·577 lines (493 loc) · 19.5 KB
/
segmentationtodicomrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from lungmask import mask
import SimpleITK as sitk
import pydicom as dicom
import numpy as np
import pydicom
from pydicom.dataset import Dataset, FileMetaDataset
from pydicom.sequence import Sequence
from pydicom.uid import generate_uid
import os
from PIL import Image, ImageDraw, ImageFont
from scipy import ndimage
import matplotlib.pyplot as plt
'''-------------------------------------------------------------------
Mask
'''
def Image2Mask(path,file_name):
input_image = sitk.ReadImage(path+'dicom/'+file_name)
segmentation = mask.apply(input_image)
x = segmentation[0]
img = sitk.GetImageFromArray(x)
sitk.WriteImage(img, path+'/Mask/Mask-'+file_name)
'''-------------------------------------------------------------------
BorderPixels2NumpyArray
'''
def isBoarder(i,j,val,num):
if num[i,j]==val and sum(sum(num[i-1:i+2,j-1:j+2]==val))<9:
isBoarder=True
else:
isBoarder=False
return isBoarder
def BorderPixels2NumpyArray(path,file_name,region_number):
ds = dicom.read_file(path+'mask/'+'Mask-'+file_name, force=True)
num=ds.pixel_array
(bi,bj)=num.shape
# Find Border pixels of each region
#for region_number in range(2):
val=region_number
fi=-1
fj=-1
sw=False
for i in range(bi):
if sw:
break
for j in range(bj):
if num[i,j]==val:
fi=i
fj=j
#print(i,j,num[i,j])
sw=True
break
i=fi
j=fj
#print(i,j,num[i,j])
# Create numpy array of borders cordinations
meet=np.ones(num.shape)
li=i
lj=j
meet[i,j]=0
borders=[]
a=1
while a<2000:
borders.append([i,j])
i=li
j=lj
a=a+1
#print(a)
if num[i+1,j]==val and isBoarder(i+1,j,val,num) and meet[i+1,j]:
li=i+1
lj=j
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i+1,j+1]==val and isBoarder(i+1,j+1,val,num) and meet[i+1,j+1]:
li=i+1
lj=j+1
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i,j+1]==val and isBoarder(i,j+1,val,num)and meet[i,j+1]:
li=i
lj=j+1
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i-1,j+1]==val and isBoarder(i-1,j+1,val,num)and meet[i-1,j+1]:
li=i-1
lj=j+1
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i-1,j]==val and isBoarder(i-1,j,val,num)and meet[i-1,j]:
li=i-1
lj=j
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i+1,j-1]==val and isBoarder(i+1,j-1,val,num)and meet[i+1,j-1]:
li=i+1
lj=j-1
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i,j-1]==val and isBoarder(i,j-1,val,num)and meet[i,j-1]:
li=i
lj=j-1
#print(li,lj,num[li,lj])
meet[li,lj]=0
elif num[i-1,j-1]==val and isBoarder(i-1,j-1,val,num)and meet[i-1,j-1]:
li=i-1
lj=j-1
#print(li,lj,num[li,lj])
meet[li,lj]=0
if (li==i and lj==j):
break
borders.append([fi,fj])
# Shapenning borders pixels
for t in range(len(borders)):
#print(t,borders[t])
i=borders[t][0]
j=borders[t][1]
num[i,j]=100
file_name=file_name.replace('mask-','')
np.save(path+ 'borders/Border'+str(val)+'-'+file_name.replace('Mask-','') +'.npy', borders)
'''
Text to BorderPixels
'''
def BorderAlphabet2Numpy(path,file_name,region_number):
#ds = dicom.read_file(path+'mask/'+file_name, force=True)
print(path+'TextImage/'+file_name)
img=Image.open(path+'TextImage/'+file_name)
img2 = img.convert("P")
#img2 = Image.open(fname).convert('L')
#img2 = np.asarray(img2)
labeled, nr_objects = ndimage.label(img2)
plt.imshow(img2)
Nimg=np.logical_not(img2)
#Nimg=Nimg[:,:,0]
plt.imshow(Nimg)
l1, nr_objects = ndimage.label(Nimg)
print("Number of objects is {}".format(nr_objects))
# Number of objects is 4
nl=(l1>1)
l2=nl*np.ones(l1.shape)
l3=l2*l1
l4=l3+nl*np.ones(l1.shape)*(labeled.max()-1)
plt.imshow(l4)
l_all=labeled+l4
plt.imshow(l_all)
num = np.array(l_all)
print('number of objects',int(l_all.max()))
(bi,bj)=num.shape
#print(bi,bj)
# Find Border pixels of each region
#for region_number in range(2):
val=region_number
fi=-1
fj=-1
sw=False
for i in range(bi):
if sw:
#print('break')
break
for j in range(bj):
#print(i,j,num[i,j])
if num[i,j]==val:
fi=i
fj=j
#print(i,j,num[i,j])
sw=True
break
i=fi
j=fj
print('initial points',i,j,num[i,j])
print('val:',val)
print(np.sum(num==val))
# Create numpy array of borders cordinations
meet=np.zeros(num.shape)
li=i
lj=j
#meet[i,j]=0
borders=[]
a=1
while a<2000:
borders.append([i,j])
i=li
j=lj
a=a+1
print(a)
if num[i+1,j]==val and isBoarder(i+1,j,val,num) and not meet[i+1,j]:
li=i+1
lj=j
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i+1,j+1]==val and isBoarder(i+1,j+1,val,num) and not meet[i+1,j+1]:
li=i+1
lj=j+1
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i,j+1]==val and isBoarder(i,j+1,val,num)and not meet[i,j+1]:
li=i
lj=j+1
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i-1,j+1]==val and isBoarder(i-1,j+1,val,num)and not meet[i-1,j+1]:
li=i-1
lj=j+1
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i-1,j]==val and isBoarder(i-1,j,val,num)and not meet[i-1,j]:
li=i-1
lj=j
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i+1,j-1]==val and isBoarder(i+1,j-1,val,num)and not meet[i+1,j-1]:
li=i+1
lj=j-1
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i,j-1]==val and isBoarder(i,j-1,val,num)and not meet[i,j-1]:
li=i
lj=j-1
print(li,lj,num[li,lj])
meet[li,lj]=a
elif num[i-1,j-1]==val and isBoarder(i-1,j-1,val,num)and not meet[i-1,j-1]:
li=i-1
lj=j-1
print(li,lj,num[li,lj])
meet[li,lj]=a
if (li==i and lj==j):
[i,j]=borders.pop(-1)
num[i,j]=val+1
if len(borders):
[i,j]=borders.pop(-1)
li=i
lj=j
print('------------------------a:',len(borders))
print('Del-----',i,j)
m=meet[li-1:li+2,lj-1:lj+2]
print(a,m)
if a>5 and np.sum((m<4) & (m>0)):
li=fi
lj=fj
print (meet[li-1:li+1,lj-1:lj+1])
print('++++++++++++++++++++++setting first point')
if (fi==li and fj==lj and a>2 ):
break
borders.append([fi,fj])
print('------------------------a:',a)
# Shapenning borders pixels
for t in range(len(borders)):
#print(t,borders[t])
i=borders[t][0]
j=borders[t][1]
num[i,j]=100
file_name=file_name.replace('mask-','')
file_name=file_name.replace('.png','.dcm')
np.save(path+ 'borders/Border'+str(val+2)+'-'+file_name +'.npy', borders)
print('Border'+str(val+2))
def Text2Mask(path,name):
fname=path+'TextImage/'+name
img = Image.open(fname).convert('L')
img = np.asarray(img)
# find connected components
labeled, nr_objects = ndimage.label(img)
#print("Number of objects is {}".format(nr_objects))
# Number of objects is 4
plt.imshow(labeled)
#name=name.replace('.png','.dcm')
plt.imsave(path+'mask/Text-'+name, labeled)
return(nr_objects)
def Text2Image(strText,path,name):
# Alphabet image
img = Image.new('RGB', (500, 80), color = (0, 0, 0))
fnt = ImageFont.truetype('Arial.ttf', 60) #'/Library/Fonts/'
d = ImageDraw.Draw(img)
d.text((0,0), strText, font=fnt, fill=(255, 255, 255))
img.save(path+'TextImage/'+name)
def TextImage2NumpyArray(path):
files = os.listdir(path+'dicom')
for i,name in enumerate(files):
name=files[i]
if name.find('.dcm')>=0:
fpath=path+'DICOM/'+name
ds = dicom.read_file(fpath, force=True)
print(ds.InstanceNumber)
strText=' ' + str(ds.InstanceNumber)
name=name.replace('.dcm','.png')
Text2Image(strText,path,name)
nr=Text2Mask(path,name)
print("Number of objects :",nr)
for j in range(nr):
rn=j+1
print('Boarder number:',rn)
BorderAlphabet2Numpy(path,name,rn)
'''-------------------------------------------------------------------
Codify
'''
# Orientation
def file_plane(IOP):
IOP_round = [round(x) for x in IOP]
plane = np.cross(IOP_round[0:3], IOP_round[3:6])
plane = [abs(x) for x in plane]
if plane[0] == 1:
return 0 #"Sagittal"
elif plane[1] == 1:
return 1 #"Coronal"
elif plane[2] == 1:
return 2 #"Transverse"
def newPosition(n,ax,xp_rt,yp_rt,x_rt,y_rt):
if ax == 0:
return(xp_rt+n*2*abs(xp_rt)/abs(x_rt))
else:
return(yp_rt+n*2*abs(yp_rt)/abs(y_rt))
def DicomRT(path,file_name,region_number):
file_path=path+'Dicom/'+file_name
dsorg = pydicom.read_file(file_path, force=True)
dcmfiles = os.listdir(path+'Dicom/')
IOP = dsorg.ImageOrientationPatient
plane = file_plane(IOP)
planVal=dsorg.ImagePositionPatient[plane]
planVal=float(planVal)
xp_rt=dsorg.ImagePositionPatient[0]
yp_rt=dsorg.ImagePositionPatient[1]
x_rt=dsorg.Columns
y_rt=dsorg.Rows
uid1=generate_uid()
uid2=generate_uid()
# File meta info data elements
file_meta = FileMetaDataset()
file_meta.FileMetaInformationGroupLength = 182
file_meta.FileMetaInformationVersion = b'\x00\x01'
file_meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3'
file_meta.MediaStorageSOPInstanceUID = uid1 #'1.2.826.0.1.534147.578.2719282597.2020101685637449'
file_meta.TransferSyntaxUID = '1.2.840.10008.1.2.1'
file_meta.ImplementationClassUID = '1.2.40.0.13.1.1'
file_meta.ImplementationVersionName = 'dcm4che-2.0'
ds = Dataset()
# Main data elements
ds = Dataset()
ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3'
ds.SOPInstanceUID =uid1 #'1.2.826.0.1.534147.578.2719282597.2020101685637449'
ds.StudyDate =dsorg.StudyDate #'20450916'
ds.StudyTime =dsorg.StudyTime # '000000'
ds.AccessionNumber = ''
ds.Modality = 'RTSTRUCT'
ds.Manufacturer =dsorg.Manufacturer # 'SIEMENS'
ds.ReferringPhysicianName = ''
ds.OperatorsName = ''
ds.ManufacturerModelName = dsorg.ManufacturerModelName # SOMATOM Definition Edge'
ds.PatientName = dsorg.PatientName # 'Covid7175'
ds.PatientID = dsorg.PatientID # 'Covid7175'
ds.PatientBirthDate = dsorg.PatientBirthDate # '19300101'
ds.PatientSex = dsorg.PatientSex # 'F'
ds.SoftwareVersions = dsorg.SoftwareVersions # 'syngo CT VA48A'
ds.StudyInstanceUID = dsorg.StudyInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53221.0' # dsOrg.StudyInstanceUID
ds.SeriesInstanceUID = uid2 #'1.2.826.0.1.534147.578.2719282597.2020101685637450'
ds.StudyID = ''
ds.SeriesNumber = None
ds.FrameOfReferenceUID = dsorg.FrameOfReferenceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53224.0' # dsOrg.FrameOfReferenceUID
ds.PositionReferenceIndicator = ''
ds.StructureSetLabel = 'AIM_Multi3_' + str(dsorg.InstanceNumber) +'_'+ str(region_number) #Scaling04
ds.StructureSetDate ='20201116'
ds.StructureSetTime ='085637'
# Referenced Frame of Reference Sequence
refd_frame_of_ref_sequence = Sequence()
ds.ReferencedFrameOfReferenceSequence = refd_frame_of_ref_sequence
# Referenced Frame of Reference Sequence: Referenced Frame of Reference 1
refd_frame_of_ref1 = Dataset()
refd_frame_of_ref1.FrameOfReferenceUID =dsorg.FrameOfReferenceUID # '1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53224.0'
# RT Referenced Study Sequence
rt_refd_study_sequence = Sequence()
refd_frame_of_ref1.RTReferencedStudySequence = rt_refd_study_sequence
# RT Referenced Study Sequence: RT Referenced Study 1
rt_refd_study1 = Dataset()
rt_refd_study1.ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.1'
rt_refd_study1.ReferencedSOPInstanceUID = dsorg.StudyInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53221.0' #
# RT Referenced Series Sequence
rt_refd_series_sequence = Sequence()
rt_refd_study1.RTReferencedSeriesSequence = rt_refd_series_sequence
# RT Referenced Series Sequence: RT Referenced Series 1
rt_refd_series1 = Dataset()
rt_refd_series1.SeriesInstanceUID =dsorg.SeriesInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53222.0'
# Contour Image Sequence
contour_image_sequence = Sequence()
rt_refd_series1.ContourImageSequence = contour_image_sequence
# Contour Image Sequence: Contour Image 1 ********************************
i=0
contour_image=[]
for dcmname in dcmfiles:
if '.dcm' in dcmname:
dsorg = pydicom.read_file(path+'Dicom/'+dcmname, force=True)
contour_image.append(Dataset())
contour_image[i] = Dataset()
contour_image[i].ReferencedSOPClassUID = '1.2.840.10008.5.1.4.1.1.2'
contour_image[i].ReferencedSOPInstanceUID = dsorg.SOPInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53223.0'
contour_image[i].ReferencedFrameNumber = "1"
contour_image_sequence.append(contour_image[i])
i=i+1
# contour_image1 = Dataset()
# contour_image1.ReferencedSOPClassUID = '1.2.840.10008.5.1.4.1.1.2'
# contour_image1.ReferencedSOPInstanceUID = dsorg.SOPInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53223.0'
# contour_image1.ReferencedFrameNumber = "1"
# contour_image_sequence.append(contour_image1)
rt_refd_series_sequence.append(rt_refd_series1)
rt_refd_study_sequence.append(rt_refd_study1)
refd_frame_of_ref_sequence.append(refd_frame_of_ref1)
# Structure Set ROI Sequence
structure_set_roi_sequence = Sequence()
ds.StructureSetROISequence = structure_set_roi_sequence
# Structure Set ROI Sequence: Structure Set ROI 1
structure_set_roi1 = Dataset()
structure_set_roi1.ROINumber = "1"
structure_set_roi1.ReferencedFrameOfReferenceUID = dsorg.FrameOfReferenceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53224.0' #
structure_set_roi1.ROIName = 'TestScale'
structure_set_roi1.ROIGenerationAlgorithm = ''
structure_set_roi_sequence.append(structure_set_roi1)
# ROI Contour Sequence
roi_contour_sequence = Sequence()
ds.ROIContourSequence = roi_contour_sequence
# ROI Contour Sequence: ROI Contour 1
roi_contour1 = Dataset()
# Contour Sequence
contour_sequence = Sequence()
roi_contour1.ContourSequence = contour_sequence
# Contour Sequence: Contour 1
contour=[]
#dcmfiles = os.listdir(path+'Dicom/') came to beginig of the function
i=0
for dcmname in dcmfiles:
#print(dcmname)
if '.dcm' in dcmname:
pnyfiles = os.listdir(path+'borders/')
for pnyname in pnyfiles:
if dcmname in pnyname:
#print(pnyname)
dsorg = pydicom.read_file(path+'Dicom/'+dcmname, force=True)
IOP = dsorg.ImageOrientationPatient
plane = file_plane(IOP)
planVal=dsorg.ImagePositionPatient[plane]
planVal=float(planVal)
xp_rt=dsorg.ImagePositionPatient[0]
yp_rt=dsorg.ImagePositionPatient[1]
x_rt=dsorg.Columns
y_rt=dsorg.Rows
# Put Contoure pixel cordination Inside file
with open(path+'Borders/'+pnyname, 'rb') as f:
num = np.load(f)
print(pnyname)
print(planVal)
borders=[]
for t in range(len(num)):
#print(t,num[t])
if plane == 0: #"Sagittal"
x=planVal
y=newPosition(num[t][1],0,xp_rt,yp_rt,x_rt,y_rt)
z=newPosition(num[t][0],1,xp_rt,yp_rt,x_rt,y_rt)
elif plane == 1: #"Coronal"
x=newPosition(num[t][1],0,xp_rt,yp_rt,x_rt,y_rt)
y=planVal
z=newPosition(num[t][0],1,xp_rt,yp_rt,x_rt,y_rt)
elif plane == 2:# "Transverse"
x=newPosition(num[t][1],0,xp_rt,yp_rt,x_rt,y_rt)
y=newPosition(num[t][0],1,xp_rt,yp_rt,x_rt,y_rt)
z=planVal
borders.extend([x,y,z])
print(i)
contour.append(Dataset())
contour[i] = Dataset()
# Contour Image Sequence
contour_image_sequence = Sequence()
contour[i].ContourImageSequence = contour_image_sequence
# Contour Image Sequence: Contour Image 1
contour_image1 = Dataset()
contour_image1.ReferencedSOPClassUID = '1.2.840.10008.5.1.4.1.1.2'
contour_image1.ReferencedSOPInstanceUID =dsorg.SOPInstanceUID #'1.2.826.0.1.3680043.9.3218.1.1.302475.1985.1592890895061.53223.0'
contour_image1.ReferencedFrameNumber = "1"
contour_image_sequence.append(contour_image1)
contour[i].ContourGeometricType = 'CLOSED_PLANAR'
contour[i].NumberOfContourPoints = len(borders)/3#"4"
contour[i].ContourNumber = "1"
contour[i].ContourData =borders # [-276.91503267973, -162.50000000000, 516.398692810457, 270.222222222222, -162.50000000000, 514.725490196078, 271.895424836601, -162.50000000000, -177.98039215686, -271.89542483660, -162.50000000000, -176.30718954248]
contour_sequence.append(contour[i])
i=i+1
roi_contour1.ReferencedROINumber = "1"
roi_contour_sequence.append(roi_contour1)
# RT ROI Observations Sequence
rtroi_observations_sequence = Sequence()
ds.RTROIObservationsSequence = rtroi_observations_sequence
# RT ROI Observations Sequence: RT ROI Observations 1
rtroi_observations1 = Dataset()
rtroi_observations1.ObservationNumber = "1"
rtroi_observations1.ReferencedROINumber = "1"
rtroi_observations1.RTROIInterpretedType = ''
rtroi_observations1.ROIInterpreter = ''
rtroi_observations_sequence.append(rtroi_observations1)
ds.file_meta = file_meta
ds.is_implicit_VR = False
ds.is_little_endian = True
ds.save_as(path+'RTSTRUCT/rt'+str(region_number)+'-'+file_name, write_like_original=False)