-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_catrs.py
327 lines (258 loc) · 13 KB
/
train_catrs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# this file is based on code publicly available at
# https://github.com/locuslab/smoothing
# written by Jeremy Cohen.
import argparse
import time
from typing import Optional
import torch
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.distributions.binomial import Binomial
from architectures import ARCHITECTURES
from datasets import get_dataset, DATASETS
from train_utils import AverageMeter, accuracy, log, test, requires_grad_
from train_utils import prologue
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--id', default=None, type=int,
help='experiment id, `randint(10000)` if None')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
parser.add_argument('--num-noise-vec', default=4, type=int,
help="number of noise vectors. `m` in the paper.")
parser.add_argument('--epsilon', default=256, type=float,
help="radius of PGD (Projected Gradient Descent) attack")
parser.add_argument('--num-steps', default=4, type=int,
help="rumber of steps of PGD (Projected Gradient Descent) attack")
parser.add_argument('--lbd', default=1.0, type=float,
help="strength of the contribution of L^high")
parser.add_argument('--confidence_mask', action='store_true',
help='if true, choose K based on confidence of Gaussian (Cohen et al., 2019) baseline (mainly to bypass cold-start problem)')
parser.add_argument('--lr_drop', default=10000, type=int,
help='drops learning rate for given epoch')
parser.add_argument('--warmup', default=10000, type=int,
help='after given epoch, raise the attack radius by 2')
args = parser.parse_args()
args.outdir = f"logs/{args.dataset}/catrs/adv_{args.epsilon}_{args.num_steps}/lbd_{args.lbd}/num_{args.num_noise_vec}/noise_{args.noise_sd}"
args.epsilon /= 256.0
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
pin_memory = (args.dataset == "imagenet")
train_dataset = get_dataset(args.dataset, f'train_t{args.noise_sd}')
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
attacker = KL_PGD(steps=args.num_steps, device=device, max_norm=args.epsilon)
for epoch in range(starting_epoch, args.epochs):
before = time.time()
if epoch >= args.warmup:
attacker = KL_PGD(steps=args.num_steps, device=device, max_norm=args.epsilon*2.0)
if epoch == args.lr_drop:
for g in optimizer.param_groups:
g['lr'] = g['lr'] * args.gamma
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch,
args.noise_sd, attacker, device, writer)
test_loss, test_acc = test(test_loader, model, criterion, epoch, args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, train_acc, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def _chunk_minibatch(batch, num_batches):
X, y, pb = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size], \
pb[i*batch_size : (i+1)*batch_size]
def train(loader: DataLoader, model: torch.nn.Module, criterion, optimizer: Optimizer,
epoch: int, noise_sd: float, attacker, device: torch.device, writer=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_reg = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
model.train()
_tril = torch.ones(args.num_noise_vec + 1, args.num_noise_vec).tril(-1).to(device)
for i, batch in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
mini_batches = _chunk_minibatch(batch, args.num_noise_vec)
for inputs, targets, pb in mini_batches:
inputs, targets, pb = inputs.to(device), targets.to(device), pb.to(device)
batch_size = inputs.size(0)
noises = [torch.randn_like(inputs, device=device) * noise_sd
for _ in range(args.num_noise_vec)]
noises0 = noises
# augment inputs with noise
inputs0_c = torch.cat([inputs + noise0 for noise0 in noises0], dim=0)
targets_c = targets.repeat(args.num_noise_vec)
# compute output
logits0_c = model(inputs0_c)
logits0_chunk = torch.chunk(logits0_c, args.num_noise_vec, dim=0)
n_classes = logits0_c.size(1)
t_sm0 = [F.one_hot(torch.argmax(logit, dim=1), n_classes) for logit in logits0_chunk]
t_sm = sum(t_sm0) / args.num_noise_vec
requires_grad_(model, False)
model.eval()
noises = attacker.attack(model, inputs, pb, noises=noises)
model.train()
requires_grad_(model, True)
inputs_c = torch.cat([inputs + noise for noise in noises], dim=0)
logits_c = model(inputs_c)
loss_xent = [F.cross_entropy(logit, targets, reduction='none').view(-1, 1) for logit in logits0_chunk]
loss_xent = torch.cat(loss_xent, dim=1)
loss_xent, _ = loss_xent.sort()
if args.confidence_mask:
w = -F.nll_loss(pb, targets, reduction='none')
else:
w = -F.nll_loss(t_sm, targets, reduction='none')
accept = Binomial(args.num_noise_vec, w).sample().long()
accept = accept.clamp(min=1)
mask_fa = (accept == args.num_noise_vec)
loss_xent = (loss_xent * _tril[accept]).mean(1)
logits_chunk = torch.chunk(logits_c, args.num_noise_vec, dim=0)
loss_kl = [F.kl_div(F.log_softmax(logit, dim=1), pb, reduction='none').sum(1, keepdim=True)
for logit in logits_chunk]
loss_klw, _ = torch.cat(loss_kl, dim=1).max(1)
loss = (loss_xent + args.lbd * loss_klw * mask_fa).mean()
# measure accuracy and record loss
acc1, acc5 = accuracy(logits_c, targets_c, topk=(1, 5))
losses.update(loss_xent.mean().item(), batch_size)
losses_reg.update(loss.item(), batch_size)
top1.update(acc1.item(), batch_size)
top5.update(acc5.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
if writer:
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('loss/consistency', losses_reg.avg, epoch)
writer.add_scalar('batch_time', batch_time.avg, epoch)
writer.add_scalar('accuracy/train@1', top1.avg, epoch)
writer.add_scalar('accuracy/train@5', top5.avg, epoch)
return (losses.avg, top1.avg)
class KL_PGD(object):
"""
CAT-RS PGD attack based on KL-divergence against smoothed prediction
Parameters
----------
steps : int
Number of steps for the optimization.
max_norm : float or None, optional
If specified, the norms of the perturbations will not be greater than this value which might lower success rate.
device : torch.device, optional
Device on which to perform the attack.
"""
def __init__(self,
steps: int,
random_start: bool = True,
max_norm: Optional[float] = None,
device: torch.device = torch.device('cpu')) -> None:
super(KL_PGD, self).__init__()
self.steps = steps
self.random_start = random_start
self.max_norm = max_norm
self.device = device
def attack(self, model, inputs, labels, noises=None):
"""
Performs CAT-RS PGD attack of the model for the inputs and labels.
Parameters
----------
model : nn.Module
Model to attack.
inputs : torch.Tensor
Batch of samples to attack. Values should be in the [0, 1] range.
labels : torch.Tensor
Smoothed predictions of the samples to attack.
noises : List[torch.Tensor]
Lists of noise samples to attack.
Returns
-------
torch.Tensor
Batch of samples modified to be adversarial to the model.
"""
if inputs.min() < 0 or inputs.max() > 1: raise ValueError('Input values should be in the [0, 1] range.')
def _batch_l2norm(x):
x_flat = x.reshape(x.size(0), -1)
return torch.norm(x_flat, dim=1)
m = len(noises)
inputs_r = inputs.repeat(m, 1, 1, 1)
noise0 = torch.cat(noises, dim=0)
noise = noise0.detach()
batch_size = inputs_r.size(0)
mu0 = noise0.view(batch_size, -1).mean(1).view(-1, 1, 1, 1)
sigma0 = (noise0 ** 2).view(batch_size, -1).mean(1).sqrt().view(-1, 1, 1, 1)
alpha = self.max_norm / self.steps * 2
for i in range(self.steps):
noise.requires_grad_()
logits_r = model(inputs_r + noise)
logits_chunk = torch.chunk(logits_r, m, dim=0)
loss_kls = [F.kl_div(F.log_softmax(logit, dim=1), labels, reduction='none').sum(1)
for logit in logits_chunk]
loss = (sum(loss_kls) / m).sum()
grad = torch.autograd.grad(loss, [noise])[0]
grad_norm = _batch_l2norm(grad).view(-1, 1, 1, 1)
grad = grad / (grad_norm + 1e-8)
noise = noise + alpha * grad
eta = noise - noise0
eta = eta.renorm(p=2, dim=0, maxnorm=self.max_norm)
noise = noise0 + eta
mu = noise.view(batch_size, -1).mean(1).view(-1, 1, 1, 1)
sigma = (noise ** 2).view(inputs_r.size(0), -1).mean(1).sqrt().view(-1, 1, 1, 1)
noise = (noise - mu) / sigma
noise = mu0 + noise * sigma0
noise = noise.detach()
return torch.chunk(noise, m, dim=0)
if __name__ == "__main__":
main()