-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10-anytime-densenet.py
executable file
·211 lines (181 loc) · 7.75 KB
/
cifar10-anytime-densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import numpy as np
import tensorflow as tf
import argparse
import os
from tensorpack import *
from tensorpack.tfutils.symbolic_functions import *
from tensorpack.tfutils.summary import *
import tensorpack.utils.anytime_loss as anytime_loss
"""
"""
NUM_RES_BLOCKS=3
NUM_UNITS=12
GROWTH_RATE=12
INIT_CHANNEL=16
NUM_UNITS_PER_STACK=1
def loss_weights(N):
return anytime_loss.stack_loss_weights(N, NUM_UNITS_PER_STACK)
class Model(ModelDesc):
def __init__(self, n, growth_rate, init_channel):
super(Model, self).__init__()
self.n = n
self.growth_rate = growth_rate
self.init_channel = init_channel
#self.bottleneck_width = 4
self.reduction_rate = 1
def _get_inputs(self):
return [InputVar(tf.float32, [None, 32, 32, 3], 'input'),
InputVar(tf.int32, [None], 'label')]
def _build_graph(self, inputs):
image, label = inputs
image = image / 128.0 - 1
def conv(name, l, channel, stride, kernel=3):
return Conv2D(name, l, channel, kernel, stride=stride,
nl=tf.identity, use_bias=False,
W_init=tf.random_normal_initializer(stddev=np.sqrt(2.0/kernel/kernel/channel)))
wd_cost = 0
total_cost = 0
total_units = NUM_RES_BLOCKS * self.n
cost_weights = loss_weights(total_units)
unit_idx = 0
merged_feats = None
for bi in range(NUM_RES_BLOCKS):
if bi == 0:
with tf.variable_scope('init_conv') as scope:
l = conv('conv', image, self.init_channel, 1)
else:
with tf.variable_scope('trans_{}'.format(bi)) as scope:
l = merged_feats
l = BatchNorm('bn'.format(bi), l)
l = tf.nn.relu(l)
l = conv('conv', l, int(l.get_shape().as_list()[3] / self.reduction_rate), 1)
l = tf.nn.relu(l)
l = AvgPooling('pool', l, 2)
merged_feats = l
for k in range(self.n):
cost_weight = cost_weights[unit_idx]
unit_idx += 1
scope_name = 'dense{}.{}'.format(bi, k)
with tf.variable_scope(scope_name) as scope:
l = merged_feats
#l = BatchNorm('bn0', l)
#l = tf.nn.relu(l)
#l = conv('conv0', l, self.growth_rate * self.bottleneck_width, 1, 1)
l = BatchNorm('bn1', l)
l = tf.nn.relu(l)
l = conv('conv1', l, self.growth_rate, 1)
merged_feats = tf.concat(3, [merged_feats, l], name='concat')
if cost_weight >0:
#print "Stop gradient at {}".format(scope_name)
#merged_feats = tf.stop_gradient(merged_feats)
l = BatchNorm('bn_pred', l)
l = tf.nn.relu(l)
l = GlobalAvgPooling('gap', l)
logits, vl = FullyConnected('linear', l, out_dim=10, nl=tf.identity, return_vars=True)
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wrong = prediction_incorrect(logits, label)
tra_err = tf.reduce_mean(wrong, name='train_error')
total_cost += cost_weight * cost
#wd_cost += cost_weight * wd_w * (tf.nn.l2_loss(vl[0]) + tf.nn.l2_loss(vl[1]))
#wd_cost += wd_w * regularize_cost('{}/conv/W'.format(scope_name), tf.nn.l2_loss)
print '{} {} {}'.format(bi, k, cost_weight)
add_moving_summary(cost)
add_moving_summary(tra_err)
# regularize conv
wd_w = tf.train.exponential_decay(0.0002, get_global_step_var(),
480000, 0.2, True)
wd_cost = tf.mul(wd_w, regularize_cost('.*/W', tf.nn.l2_loss), name='wd_cost')
total_cost = tf.identity(total_cost, name='pred_cost')
add_moving_summary(total_cost, wd_cost)
add_param_summary(('.*/W', ['histogram'])) # monitor W
self.cost = tf.add_n([total_cost, wd_cost], name='cost')
def get_data(train_or_test):
isTrain = train_or_test == 'train'
ds = dataset.Cifar10(train_or_test, shuffle=True)
pp_mean = ds.get_per_pixel_mean()
if isTrain:
augmentors = [
imgaug.CenterPaste((40, 40)),
imgaug.RandomCrop((32, 32)),
imgaug.Flip(horiz=True),
imgaug.MapImage(lambda x: x - pp_mean),
]
else:
augmentors = [
imgaug.MapImage(lambda x: x - pp_mean)
]
ds = AugmentImageComponent(ds, augmentors)
ds = BatchData(ds, 64, remainder=not isTrain)
if isTrain:
ds = PrefetchData(ds, 3, 2)
return ds
def get_config():
logger.auto_set_dir()
# prepare dataset
dataset_train = get_data('train')
steps_per_epoch = dataset_train.size()
dataset_test = get_data('test')
get_global_step_var()
lr = tf.Variable(0.1, trainable=False, name='learning_rate')
tf.summary.scalar('learning_rate', lr)
vcs = []
total_units = NUM_RES_BLOCKS * NUM_UNITS
cost_weights = loss_weights(total_units)
unit_idx = 0
for bi in range(NUM_RES_BLOCKS):
for ui in range(NUM_UNITS):
scope_name = 'dense{}.{}/'.format(bi, ui)
if cost_weights[unit_idx] > 0:
vcs.append(ClassificationError(\
wrong_tensor_name=scope_name+'incorrect_vector:0',
summary_name=scope_name+'val_err'))
unit_idx += 1
return TrainConfig(
dataflow=dataset_train,
optimizer=tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True),
callbacks=[
StatPrinter(),
ModelSaver(),
InferenceRunner(dataset_test,
[ScalarStats('cost')] + vcs),
ScheduledHyperParamSetter('learning_rate',
[(1, 0.1), (150, 0.01), (225, 0.001)])
],
model=Model(n=NUM_UNITS, growth_rate=GROWTH_RATE, init_channel=INIT_CHANNEL),
steps_per_epoch=steps_per_epoch,
max_epoch=300,
)
if __name__ == '__main__':
CUDA_VISIBLE_DEVICES=""
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--num_units',
help='number of units in each stage',
type=int, default=12)
parser.add_argument('-g', '--growth_rate',
help='number of channel per new layer',
type=int, default=12)
parser.add_argument('-c', '--init_channel',
help='number of initial channels',
type=int, default=16)
parser.add_argument('-s', '--stack',
help='number of units per stack, i.e., number of units per prediction',
type=int, default=1)
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') # nargs='*' in multi mode
parser.add_argument('--load', help='load model')
args = parser.parse_args()
NUM_UNITS = args.num_units
GROWTH_RATE = args.growth_rate
INIT_CHANNEL = args.init_channel
NUM_UNITS_PER_STACK = args.stack
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
if args.gpu:
config.nr_tower = len(args.gpu.split(','))
config.set_tower(tower=map(int, args.gpu.split(',')))
SyncMultiGPUTrainer(config).train()