-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPTB-LSTM.py
executable file
·181 lines (149 loc) · 6.65 KB
/
PTB-LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: PTB-LSTM.py
# Author: Yuxin Wu <[email protected]>
import numpy as np
import os
import argparse
from tensorpack import *
from tensorpack.tfutils import optimizer, summary, gradproc
from tensorpack.utils import logger
from tensorpack.utils.fs import download, get_dataset_path
from tensorpack.utils.argtools import memoized_ignoreargs
import reader as tfreader
from reader import ptb_producer
import tensorflow as tf
rnn = tf.contrib.rnn
SEQ_LEN = 35
HIDDEN_SIZE = 650
NUM_LAYER = 2
BATCH = 20
DROPOUT = 0.5
VOCAB_SIZE = None
TRAIN_URL = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/ptb.train.txt'
VALID_URL = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/ptb.valid.txt'
TEST_URL = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/ptb.test.txt'
@memoized_ignoreargs
def get_PennTreeBank(data_dir=None):
if data_dir is None:
data_dir = get_dataset_path('ptb_data')
if not os.path.isfile(os.path.join(data_dir, 'ptb.train.txt')):
download(TRAIN_URL, data_dir)
download(VALID_URL, data_dir)
download(TEST_URL, data_dir)
word_to_id = tfreader._build_vocab(os.path.join(data_dir, 'ptb.train.txt'))
data3 = [np.asarray(tfreader._file_to_word_ids(os.path.join(data_dir, fname), word_to_id))
for fname in ['ptb.train.txt', 'ptb.valid.txt', 'ptb.test.txt']]
return data3, word_to_id
class Model(ModelDesc):
def inputs(self):
return [tf.placeholder(tf.int32, (None, SEQ_LEN), 'input'),
tf.placeholder(tf.int32, (None, SEQ_LEN), 'nextinput')]
def build_graph(self, input, nextinput):
is_training = get_current_tower_context().is_training
initializer = tf.random_uniform_initializer(-0.05, 0.05)
def get_basic_cell():
cell = rnn.BasicLSTMCell(num_units=HIDDEN_SIZE, forget_bias=0.0, reuse=tf.get_variable_scope().reuse)
if is_training:
cell = rnn.DropoutWrapper(cell, output_keep_prob=DROPOUT)
return cell
cell = rnn.MultiRNNCell([get_basic_cell() for _ in range(NUM_LAYER)])
def get_v(n):
return tf.get_variable(n, [BATCH, HIDDEN_SIZE],
trainable=False,
initializer=tf.constant_initializer())
state_var = [rnn.LSTMStateTuple(
get_v('c{}'.format(k)), get_v('h{}'.format(k))) for k in range(NUM_LAYER)]
self.state = state_var = tuple(state_var)
embeddingW = tf.get_variable('embedding', [VOCAB_SIZE, HIDDEN_SIZE], initializer=initializer)
input_feature = tf.nn.embedding_lookup(embeddingW, input) # B x seqlen x hiddensize
input_feature = Dropout(input_feature, rate=DROPOUT)
with tf.variable_scope('LSTM', initializer=initializer):
input_list = tf.unstack(input_feature, num=SEQ_LEN, axis=1) # seqlen x (Bxhidden)
outputs, last_state = rnn.static_rnn(cell, input_list, state_var, scope='rnn')
# update the hidden state after a rnn loop completes
update_state_ops = []
for k in range(NUM_LAYER):
update_state_ops.extend([
tf.assign(state_var[k].c, last_state[k].c),
tf.assign(state_var[k].h, last_state[k].h)])
# seqlen x (Bxrnnsize)
output = tf.reshape(tf.concat(outputs, 1), [-1, HIDDEN_SIZE]) # (Bxseqlen) x hidden
logits = FullyConnected('fc', output, VOCAB_SIZE,
activation=tf.identity, kernel_initializer=initializer,
bias_initializer=initializer)
xent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=tf.reshape(nextinput, [-1]))
with tf.control_dependencies(update_state_ops):
cost = tf.truediv(tf.reduce_sum(xent_loss),
tf.cast(BATCH, tf.float32), name='cost') # log-perplexity
perpl = tf.exp(cost / SEQ_LEN, name='perplexity')
summary.add_moving_summary(perpl, cost)
return cost
def reset_lstm_state(self):
s = self.state
z = tf.zeros_like(s[0].c)
ops = []
for k in range(NUM_LAYER):
ops.append(s[k].c.assign(z))
ops.append(s[k].h.assign(z))
return tf.group(*ops, name='reset_lstm_state')
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=1.0, trainable=False)
opt = tf.train.GradientDescentOptimizer(lr)
return optimizer.apply_grad_processors(
opt, [gradproc.GlobalNormClip(5)])
def get_config():
logger.auto_set_dir()
data3, wd2id = get_PennTreeBank()
global VOCAB_SIZE
VOCAB_SIZE = len(wd2id)
steps_per_epoch = (data3[0].shape[0] // BATCH - 1) // SEQ_LEN
train_data = TensorInput(
lambda: ptb_producer(data3[0], BATCH, SEQ_LEN),
steps_per_epoch)
val_data = TensorInput(
lambda: ptb_producer(data3[1], BATCH, SEQ_LEN),
(data3[1].shape[0] // BATCH - 1) // SEQ_LEN)
test_data = TensorInput(
lambda: ptb_producer(data3[2], BATCH, SEQ_LEN),
(data3[2].shape[0] // BATCH - 1) // SEQ_LEN)
M = Model()
return TrainConfig(
data=train_data,
model=M,
callbacks=[
ModelSaver(),
HyperParamSetterWithFunc(
'learning_rate',
lambda e, x: x * 0.80 if e > 6 else x),
RunOp(lambda: M.reset_lstm_state()),
InferenceRunner(val_data, [ScalarStats(['cost'])]),
RunOp(lambda: M.reset_lstm_state()),
InferenceRunner(
test_data,
[ScalarStats(['cost'], prefix='test')], tower_name='InferenceTowerTest'),
RunOp(lambda: M.reset_lstm_state()),
CallbackFactory(
trigger=lambda self:
[self.trainer.monitors.put_scalar(
'validation_perplexity',
np.exp(self.trainer.monitors.get_latest('validation_cost') / SEQ_LEN)),
self.trainer.monitors.put_scalar(
'test_perplexity',
np.exp(self.trainer.monitors.get_latest('test_cost') / SEQ_LEN))]
),
],
max_epoch=70,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
launch_train_with_config(config, SimpleTrainer())