-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolvers.py
384 lines (314 loc) · 15.7 KB
/
solvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 19 10:32:10 2023
@author: uqalim8
"""
import torch
from constants import cTYPE, cCUDA
class Solvers:
def __init__(self, A, b, maxit, tol, reO, x0, prinT):
if x0 is None:
self.xk = torch.zeros_like(b, dtype = cTYPE, device = cCUDA)
else:
self.xk = x0
if maxit is None:
self._maxit = b.shape[0]
else:
self._maxit = maxit
self.A = A
self.b = b
self._tol = tol
self._reO = reO
self._print = prinT
self.ite = 0
def reOrthogonalize(self, M, vec):
if M is None:
M = vec.reshape(-1, 1) / torch.norm(vec)
else:
vec = vec - M @ Avec(M.T, vec)
M = torch.concat([M, vec.reshape(-1, 1) / torch.norm(vec)], dim = 1)
return M, vec
def terminate(self, k, norm):
return k < self._maxit and norm > self._tol
def storePrintStats(self, k, *args):
if self._print:
length = len(self._STATS)
items = "{:^5}" + (length - 1) * " | {:^11}"
statistics = "{:^5}" + (length - 1) * " | {:^11.2e}"
if not k % 100:
print(length * 13 * "-" + "-")
print(items.format(*self._STATS))
print(length * 13 * "-" + "-")
print(statistics.format(k, *args))
for key, val in zip(self.stat.keys(), map(float, args)):
self.stat[key].append(val)
def iterate(self):
raise NotImplementedError()
def solve(self):
raise NotImplementedError()
class ConjugateGradient(Solvers):
# "αk"
#_STATS = ("ite", "αk", "|rk|/|b|", "|Ar|/|Ab|", "|Apk|/|Ab|", "<b, Apk>", "<b, rk>", "A(αp)-(αA)p", "|b-Ax-r|")
_STATS = ("ite", "|rk|/|b|", "|Ark|/|Ab|", "|Apk|/|Ab|", "|b-Ax-r|", "pred")
def __init__(self, A, b, maxit = None, tol = 1e-8, reO = False, x0 = None, prinT = True):
super().__init__(A, b, maxit, tol, reO, x0, prinT)
self.stat = {k : [] for k in self._STATS[1:]}
def iterate(self, xk, rk, pk, Ap, pAp, norm_r, R):
alpha = norm_r ** 2 / pAp
xk = xk + alpha * pk
rk = rk - alpha * Ap
# re-orthogonalization
if not R is None:
rk = rk - R @ Avec(R.T, rk)
norm_rk = torch.norm(rk)
R = torch.concat([R, rk.reshape(-1, 1) / norm_rk], dim = 1)
else:
norm_rk = torch.norm(rk)
beta = (norm_rk / norm_r) ** 2
pk = rk + beta * pk
return xk, rk, pk, norm_rk, R
def solve(self, pred = lambda x : 0):
rk = self.b - Avec(self.A, self.xk)
r0, pk = rk, rk
Ap = Avec(self.A, pk)
pAp = torch.dot(Ap, pk)
norm_r0 = torch.norm(r0)
norm_rk = norm_r0
norm_Ar0 = torch.norm(Ap)
norm_Ap, norm_Ark = norm_Ar0, norm_Ar0
# re-orthogonalization
if self._reO:
R = rk.reshape(-1, 1) / norm_rk
else:
R = None
# Rx = rk.reshape(-1, 1) / torch.norm(rk)
# AP = Ap.reshape(-1, 1) / torch.norm(Ap)
# P = pk.reshape(-1, 1) / torch.norm(pk)
# PAP = [float(pAp / (torch.norm(Ap) * torch.norm(pk)))]
self.storePrintStats(self.ite,
relnorm := norm_rk / norm_r0,
relAnorm := norm_Ark / norm_Ar0,
relApnorm := torch.norm(Ap) / norm_Ar0,
# abs(torch.dot(r0, Ap)) / (norm_r0 * torch.norm(Ap)),
# abs(torch.dot(r0, rk)) / (norm_r0 * norm_rk),
torch.norm((self.b - Avec(self.A, self.xk)) - rk),
pred(self.xk))
while self.terminate(self.ite, relApnorm):
self.xk, rk, pk, norm_rk, R = self.iterate(self.xk, rk, pk, Ap, pAp, norm_rk, R)
# update
Ap = Avec(self.A, pk)
pAp = torch.dot(pk, Ap)
self.ite += 1
# Rx = torch.concat([Rx, rk.reshape(-1, 1) / torch.norm(rk)], dim = -1)
# AP = torch.concat([AP, Ap.reshape(-1, 1) / torch.norm(Ap)], dim = -1)
# P = torch.concat([P, pk.reshape(-1, 1) / torch.norm(pk)], dim = -1)
# PAP.append(float(pAp / (torch.norm(Ap) * torch.norm(pk))))
norm_Ark = torch.norm(Avec(self.A, rk))
self.storePrintStats(self.ite,
relnorm := norm_rk / norm_r0,
relAnorm := norm_Ark / norm_Ar0,
relApnorm := torch.norm(Ap) / norm_Ar0,
# abs(torch.dot(r0, Ap)) / (norm_r0 * torch.norm(Ap)),
# abs(torch.dot(r0, rk)) / (norm_r0 * norm_rk),
torch.norm((self.b - Avec(self.A, self.xk)) - rk),
pred(self.xk))
# self.storePrintStats(self.ite,
# relnorm := norm_rk / norm_r0,
# relAnorm := norm_Ark / norm_Ar0,
# torch.norm(Ap) / norm_Ar0,
# torch.norm(torch.diag(torch.tensor(PAP)) - P.T @ AP, p = 2),
# torch.norm(torch.eye(self.ite + 1) - Rx.T @ Rx, p = 2),
# torch.norm((self.b - Avec(self.A, self.xk)) - rk))
self.stat["xk"] = self.xk.tolist()
self.xk = self.xk - torch.dot(self.xk, rk) * rk / (norm_rk ** 2)
self.stat["xk_lifted"] = self.xk.tolist()
class ConjugateResidual(Solvers):
#_STATS = ("ite", "|rk|/|b|", "|Ark|/|Ab|", "<b, Ark>", "<Ab, Ap>", "A(αp)-(αA)p", "|b-Ax-r|")
_STATS = ("ite", "|rk|/|b|", "|Ark|/|Ab|", "|b-Ax-r|", "pred")
def __init__(self, A, b, maxit = None, tol = 1e-8, reO = False, x0 = None, prinT = True):
super().__init__(A, b, maxit, tol, reO, x0, prinT)
self.stat = {k : [] for k in self._STATS[1:]}
def iterate(self, xk, Ar, rk, Ap, pk, pAAp, rAr, AP):
alpha = rAr / pAAp
xk = xk + alpha * pk
rk = rk - alpha * Ap
if not AP is None:
rk = rk - AP @ Avec(AP.T, rk)
Ar = Avec(self.A, rk)
rArp = torch.dot(Ar, rk)
beta = rArp / rAr
pk = rk + beta * pk
Ap = Ar + beta * Ap
# re-orthogonalization
if not AP is None:
#Ap = Ap - AP @ Avec(AP.T, Ap)
AP = torch.concat([AP, Ap.reshape(-1, 1) / torch.norm(Ap)], dim = 1)
return xk, Ar, rk, Ap, pk, rArp, AP
def solve(self, pred = lambda x : 0):
rk = self.b - Avec(self.A, self.xk)
r0, pk = rk.clone(), rk.clone()
Ar = Avec(self.A, rk)
rAr = torch.dot(Ar, rk)
Ar0, Ap = Ar.clone(), Ar.clone()
norm_Ap = torch.norm(Ap)
pAAp = norm_Ap ** 2
norm_r0 = torch.norm(rk)
norm_rk = norm_r0.clone()
norm_Ar0 = torch.norm(Ar)
norm_Ar = norm_Ar0.clone()
# re-orthogonalization
if self._reO:
AP = Ap.reshape(-1, 1) / norm_Ap
else:
AP = None
# R = rk.reshape(-1, 1) / norm_r0
# AR = Ar.reshape(-1, 1) / torch.norm(Ar)
# APx = Ap.reshape(-1, 1) / torch.norm(Ap)
# RAR = [float(rAr / (norm_Ar * norm_r0))]
# self._X = self.xk.reshape(-1, 1)
self.storePrintStats(self.ite,
relnorm := norm_rk / norm_r0,
relAnorm := norm_Ar / norm_Ar0,
# abs(torch.dot(r0, Ar)) / (norm_r0 * norm_Ar),
# abs(torch.dot(Ar0, Ap)) / (norm_Ar0 * norm_Ap),
torch.norm((self.b - Avec(self.A, self.xk)) - rk),
pred(self.xk))
while self.terminate(self.ite, relAnorm):
self.xk, Ar, rk, Ap, pk, rAr, AP = self.iterate(self.xk, Ar, rk, Ap, pk, pAAp, rAr, AP)
# self._X = torch.cat([self._X, self.xk.reshape(-1, 1)], dim = -1)
# update
pAAp = torch.dot(Ap, Ap)
norm_r = torch.norm(rk)
norm_Ar = torch.norm(Ar)
self.ite += 1
self.storePrintStats(self.ite,
relnorm := norm_r / norm_r0,
relAnorm := norm_Ar / norm_Ar0,
# abs(torch.dot(r0, Ar)) / (norm_r0 * norm_Ar),
# abs(torch.dot(Ar0, Ap)) / (norm_Ar0 * torch.norm(Ap)),
torch.norm((self.b - Avec(self.A, self.xk)) - rk),
pred(self.xk))
# R = torch.cat([R, rk.reshape(-1, 1) / torch.norm(rk)], dim = -1)
# AR = torch.cat([AR, Ar.reshape(-1, 1) / torch.norm(Ar)], dim = -1)
# APx = torch.cat([APx, Ap.reshape(-1, 1) / torch.norm(Ap)], dim = -1)
# RAR.append(float(rAr / (norm_r * norm_Ar)))
# self.storePrintStats(self.ite,
# relnorm := norm_r / norm_r0,
# relAnorm := norm_Ar / norm_Ar0,
# torch.norm(torch.diag(torch.tensor(RAR)) - R.T @ AR, p = 2),
# torch.norm(torch.eye(self.ite + 1) - APx.T @ APx, p = 2),
# torch.norm((self.b - Avec(self.A, self.xk)) - rk))
self.stat["xk"] = self.xk.tolist()
self.xk = self.xk - torch.dot(self.xk, rk) * rk / (norm_r ** 2)
self.stat["xk_lifted"] = self.xk.tolist()
class MinimalResidual(Solvers):
#_STATS = ("ite", "|rk|/|b|", "|Ark|/|Ab|", "<b, Ar>", "<Ad0, Adk>", "<v1, vk>", "A(αp)-(αA)p", "|b-Ax-r|")
_STATS = ("ite", "|rk|/|b|", "|Ark|/|Ab|", "|b-Ax-r|", "pred")
def __init__(self, A, b, maxit = None, tol = 1e-8, reO = False, x0 = None, prinT = True):
super().__init__(A, b, maxit, tol, reO, x0, prinT)
self.stat = {k : [] for k in self._STATS[1:]}
self._zero = 0
def iterate(self, xkm1, rkm1, vk, vkm1, dkm1, dkm2, betak, ckm1,
skm1, delta1k, phikm1, epsk, V):
pk = Avec(self.A, vk)
alphak = torch.dot(vk, pk)
pk = pk - betak * vkm1
pk = pk - alphak * vk
betakp1 = torch.norm(pk)
vkp1 = pk / betakp1
if not V is None:
print("reOrtho")
vkp1 = vkp1 - V @ (Avec(V.T, vkp1))
#for i in range(V.shape[-1]):
# vkp1 = vkp1 - V[:, i] * torch.dot(V[:, i], vkp1)
V = torch.concat([V, vkp1.reshape(-1, 1)], dim = 1)
delta2k = ckm1 * delta1k + skm1 * alphak
gamma1k = skm1 * delta1k - ckm1 * alphak
epskp1 = skm1 * betakp1
delta1kp1 = -ckm1 * betakp1
gamma2k = torch.sqrt(gamma1k ** 2 + betakp1 ** 2)
if gamma2k > self._zero:
ck = gamma1k / gamma2k
sk = betakp1 / gamma2k
tauk = ck * phikm1
phik = sk * phikm1
dk = (vk - delta2k * dkm1 - epsk * dkm2) / gamma2k
xk = xkm1 + tauk * dk
if betakp1 > self._zero:
rk = sk ** 2 * rkm1 - phik * ck * vkp1
else:
rk = torch.zeros_like(self.b)
print("beta is less than zero")
return xk, rk, vkp1, vk, dk, dkm1, betakp1, ck, sk, delta1kp1, phik, epskp1, gamma2k, tauk, V
else:
ck, sk, tauk, phik = 0, 1, 0, phikm1
rk = rkm1
xk = xkm1
print("gamma is less than zero")
return xk, rk, vkp1, vk, dk, dkm1, betakp1, ck, sk, delta1kp1, phik, epskp1, gamma2k, tauk, V
return xk, rk, vkp1, vk, dk, dkm1, betakp1, ck, sk, delta1kp1, phik, epskp1, gamma2k, tauk, V
def solve(self, pred = lambda x : 0):
rkm1 = self.b - Avec(self.A, self.xk)
Ar0 = Avec(self.A, rkm1)
r0 = rkm1
betak = torch.norm(rkm1)
vk = rkm1 / betak
vkm1, xkm1, dkm1, dkm2 = 4 * [torch.zeros_like(rkm1, dtype = cTYPE, device = cCUDA)]
ckm1, skm1, phikm1 = -1, 0, betak
delta1k, epsk = 0, 0
norm_r0, norm_rk = betak, betak
Ar = Ar0
norm_Ar0 = torch.norm(Ar0)
norm_Ar = norm_Ar0
# re-orthogonalization
if self._reO:
V = vk.reshape(-1, 1)
else:
V = None
# R = vk.reshape(-1, 1)
# AD = Ar.reshape(-1, 1) / torch.norm(Ar)
# AR = Ar.reshape(-1, 1) / torch.norm(Ar)
# RAR = [float(torch.dot(r0, Ar) / (torch.norm(Ar) * torch.norm(r0)))]
# self._X = self.xk.reshape(-1, 1)
self.storePrintStats(self.ite,
relnorm := norm_rk / norm_r0,
relAnorm := norm_Ar / norm_Ar0,
torch.norm((self.b - Avec(self.A, self.xk)) - rkm1),
pred(self.xk))
# k - 1 because we want to detect gamma = 0
while self.terminate(self.ite - 1, relAnorm):
return_vals = self.iterate(self.xk, rkm1, vk, vkm1, dkm1, dkm2, betak,
ckm1, skm1, delta1k, phikm1, epsk, V)
self.xk, rkm1, vk, vkm1, dkm1, dkm2, betak, ckm1, skm1, delta1k, phikm1, epsk, gamma, tau, V = return_vals
# update
self.ite += 1
Ar = Avec(self.A, rkm1)
norm_Ar = torch.norm(Ar)
# Adk = Avec(self.A, dkm1)
# R = torch.cat([R, rkm1.reshape(-1, 1) / torch.norm(rkm1)], dim = -1)
# AR = torch.cat([AR, Ar.reshape(-1, 1) / torch.norm(Ar)], dim = -1)
# AD = torch.cat([AD, Adk.reshape(-1, 1) / torch.norm(Adk)], dim = -1)
# RAR.append(float(torch.dot(Ar, rkm1) / (torch.norm(Ar) * torch.norm(rkm1))))
# self._X = torch.cat([self._X, self.xk.reshape(-1, 1)], dim = -1)
self.storePrintStats(self.ite,
relnorm := torch.norm(rkm1) / norm_r0,
relAnorm := norm_Ar / norm_Ar0,
# abs(torch.dot(r0, Ar)) / (norm_r0 * norm_Ar),
# abs(torch.dot(Ar0, Adk)) / (norm_Ar0 * torch.norm(Adk)),
# abs(torch.dot(r0, vk)) / norm_r0,
torch.norm((self.b - Avec(self.A, self.xk)) - rkm1),
pred(self.xk))
# self.storePrintStats(self.ite,
# relnorm := torch.norm(rkm1) / norm_r0,
# relAnorm := norm_Ar / norm_Ar0,
# torch.norm(torch.diag(torch.tensor(RAR)) - R.T @ AR, p = 2),
# torch.norm(torch.eye(self.ite) - AD[:, 1:].T @ AD[:, 1:], p = 2),
# #abs(torch.dot(r0, vk)) / norm_r0,
# torch.norm((self.b - Avec(self.A, self.xk)) - rkm1))
self.stat["xk"] = self.xk.tolist()
self.xk = self.xk - torch.dot(self.xk, rkm1) * rkm1 / (torch.norm(rkm1) ** 2)
self.stat["xk_lifted"] = self.xk.tolist()
def Avec(A, x):
if callable(A):
return A(x)
return torch.mv(A, x)