-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathlinear_sieve.rs
128 lines (120 loc) · 3.94 KB
/
linear_sieve.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
Linear Sieve algorithm:
Time complexity is indeed O(n) with O(n) memory, but the sieve generally
runs slower than a well implemented sieve of Eratosthenes. Some use cases are:
- factorizing any number k in the sieve in O(log(k))
- calculating arbitrary multiplicative functions on sieve numbers
without increasing the time complexity
- As a by product, all prime numbers less than `max_number` are stored
in `primes` vector.
*/
pub struct LinearSieve {
max_number: usize,
pub primes: Vec<usize>,
pub minimum_prime_factor: Vec<usize>,
}
impl LinearSieve {
pub const fn new() -> Self {
LinearSieve {
max_number: 0,
primes: vec![],
minimum_prime_factor: vec![],
}
}
pub fn prepare(&mut self, max_number: usize) -> Result<(), &'static str> {
if max_number <= 1 {
return Err("Sieve size should be more than 1");
}
if self.max_number > 0 {
return Err("Sieve already initialized");
}
self.max_number = max_number;
self.minimum_prime_factor.resize(max_number + 1, 0);
for i in 2..=max_number {
if self.minimum_prime_factor[i] == 0 {
self.minimum_prime_factor[i] = i;
self.primes.push(i);
/*
if needed, a multiplicative function can be
calculated for this prime number here:
function[i] = base_case(i);
*/
}
for p in self.primes.iter() {
let mlt = (*p) * i;
if *p > i || mlt > max_number {
break;
}
self.minimum_prime_factor[mlt] = *p;
/*
multiplicative function for mlt can be calculated here:
if i % p:
function[mlt] = add_to_prime_exponent(function[i], i, p);
else:
function[mlt] = function[i] * function[p]
*/
}
}
Ok(())
}
pub fn factorize(&self, mut number: usize) -> Result<Vec<usize>, &'static str> {
if number > self.max_number {
return Err("Number is too big, its minimum_prime_factor was not calculated");
}
if number == 0 {
return Err("Number is zero");
}
let mut result: Vec<usize> = Vec::new();
while number > 1 {
result.push(self.minimum_prime_factor[number]);
number /= self.minimum_prime_factor[number];
}
Ok(result)
}
}
#[cfg(test)]
mod tests {
use super::LinearSieve;
#[test]
fn small_primes_list() {
let mut ls = LinearSieve::new();
ls.prepare(25).unwrap();
assert_eq!(ls.primes, vec![2, 3, 5, 7, 11, 13, 17, 19, 23]);
}
#[test]
fn divisible_by_mpf() {
let mut ls = LinearSieve::new();
ls.prepare(1000).unwrap();
for i in 2..=1000 {
let div = i / ls.minimum_prime_factor[i];
assert_eq!(i % ls.minimum_prime_factor[i], 0);
if div == 1 {
// Number must be prime
assert!(ls.primes.binary_search(&i).is_ok());
}
}
}
#[test]
fn check_factorization() {
let mut ls = LinearSieve::new();
ls.prepare(1000).unwrap();
for i in 1..=1000 {
let factorization = ls.factorize(i).unwrap();
let mut product = 1usize;
for (idx, p) in factorization.iter().enumerate() {
assert!(ls.primes.binary_search(&p).is_ok());
product *= *p;
if idx > 0 {
assert!(*p >= factorization[idx - 1]);
}
}
assert_eq!(product, i);
}
}
#[test]
fn check_number_of_primes() {
let mut ls = LinearSieve::new();
ls.prepare(100_000).unwrap();
assert_eq!(ls.primes.len(), 9592);
}
}