-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalcove.py
executable file
·657 lines (535 loc) · 22.3 KB
/
alcove.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import os
import time
import argparse
import itertools
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from data_loader import get_label_coding, load_shj_abstract, load_shj_images, load_shj_abstract_PCA
#
# PyTorch implementation of
# ALCOVE: An exemplar-based connectionist model of category learning (Kruschke, 1992)
# Main script runs ALCOVE on stimuli of Shephard, Hovland, and Jenkins (1961)
# There are a few modifications to Kruschke's original ALCOVE:
# - with two classes, there is only one binary output
# - rather the using Kruschke's loss, there are options to maximize
# the log-likelihood directly (ll loss) or a version of the humble teacher (hinge loss)
class ALCOVE(nn.Module):
def __init__(self, exemplars, c, phi):
# Input
# exemplars: [ne x dim] rows are exemplars provided to model
super(ALCOVE, self).__init__()
self.ne = exemplars.size(0) # number of exemplars
self.dim = exemplars.size(1) # stimulus dimension
self.exemplars = exemplars # ne x dim
# set attention weights to be uniform
self.attn = torch.nn.Parameter(
torch.ones((self.dim, 1))/float(self.dim))
# set association weights to zero
self.w = torch.nn.Linear(self.ne, 1, bias=False)
self.w.weight = torch.nn.Parameter(torch.zeros((1, self.ne)))
# sharpness parameter (Kruschke uses 6.5 in SHJ simulations)
self.c = c
# temperature when making decisions; not included in loss (Kruschke uses 2.0)
self.phi = phi
def forward(self, x):
# Input
# x: [dim tensor] a single stimulus
#
# Output
# output : [tensor scalar] unnormalized log-score (before sigmoid)
# prob : [tensor scalar] sigmoid output
x = x.view(-1, 1) # dim x 1
x_expand = x.expand((-1, self.ne)) # dim x ne
x_expand = torch.t(x_expand) # ne x dim
attn_expand = self.attn.expand((-1, self.ne)) # dim x ne
attn_expand = torch.t(attn_expand) # ne x dim
# memory/hidden layer is computes the similarity of stimulus x to each exemplar
hidden = attn_expand * torch.abs(self.exemplars-x_expand) # ne x dim
hidden = torch.sum(hidden, dim=1) # ne
hidden = torch.exp(-self.c * hidden) # ne
hidden = hidden.view((1, -1)) # 1 x ne
# compute the output response
output = self.w(hidden).view(-1) # tensor scalar
prob = torch.sigmoid(self.phi*output) # tensor scalar
return output, prob
class MLP(nn.Module):
def __init__(self, exemplars, phi, nhid=8):
# Input
# exemplars: [ne x dim] rows are exemplars provided to model
super(MLP, self).__init__()
self.ne = exemplars.size(0) # number of exemplars
self.dim = exemplars.size(1) # stimulus dimension
self.nhid = nhid
self.hid = torch.nn.Linear(self.dim, self.nhid)
self.out = torch.nn.Linear(self.nhid, 1)
self.phi = phi
def forward(self, x):
# Input
# x: [dim tensor] a single stimulus
#
# Output
# output : [tensor scalar] unnormalized log-score (before sigmoid)
# prob : [tensor scalar] sigmoid output
x = x.view(1, -1) # dim x 1
x = self.hid(x)
x = torch.tanh(x)
output = self.out(x)
prob = torch.sigmoid(self.phi*output) # tensor scalar
return output, prob
class corr_object:
def __init__(self, s_corr, s_p, k_corr, k_p):
self.s_corr = s_corr
self.s_p = s_p
self.k_corr = k_corr
self.k_p = k_p
def update_batch(net, exemplars, targets, loss, optimizer):
# Update the weights using batch SGD for the entire set of exemplars
#
# Input
# exemplars: [ne x dim tensor] all stimuli/exempalrs in experiment
# targets: [ne tensor] classification targets (1/0 or 1/-1, depending on loss)
# loss: function handle
# optimizer : SGD optimizer
net.zero_grad()
net.train()
n_exemplars = exemplars.size(0)
out = torch.zeros(n_exemplars)
for j in range(n_exemplars):
out[j], _ = net.forward(exemplars[j])
myloss = loss(out, targets)
myloss.backward()
optimizer.step()
if model_type == 'alcove':
# ensure attention is non-negative
net.attn.data = torch.clamp(net.attn.data, min=0.)
return myloss.cpu().item()
def update_single(net, exemplars, targets, loss, optimizer):
# net.zero_grad()
# net.train()
torch.autograd.set_detect_anomaly(True)
n_exemplars = exemplars.size(0)
out = torch.zeros(n_exemplars)
current_loss = torch.zeros(n_exemplars)
for j in range(n_exemplars):
net.zero_grad()
net.train()
out, _ = net.forward(exemplars[j])
out = out.squeeze() # remove batch dim
myloss = loss(out, targets[j])
myloss.backward()
optimizer.step()
current_loss[j] = myloss.cpu().item()
if model_type == 'alcove':
# ensure attention is non-negative
net.attn.data = torch.clamp(net.attn.data, min=0.)
return torch.sum(current_loss).item()
def evaluate(net, exemplars, targets):
# Compute probability of getting each answer/exemplar right using sigmoid
#
# Input
# exemplars: [ne x dim tensor] all stimuli/exempalrs in experiment
# targets: [ne tensor] classification targets (1/0 or 1/-1, depending on loss)
#
# Output
# mean probability of correct response
# mean accuracy when picking most likely response
net.eval()
n_exemplars = exemplars.size(0)
v_acc = np.zeros(n_exemplars)
v_prob = np.zeros(n_exemplars)
for j in range(n_exemplars):
out, prob = net.forward(exemplars[j])
out = out.item() # logit
prob = prob.item() # prob of decision
if targets[j].item() == POSITIVE:
v_prob[j] = prob
v_acc[j] = out >= 0
elif targets[j].item() == NEGATIVE:
v_prob[j] = 1-prob
v_acc[j] = out < 0
return np.mean(v_prob), 100.*np.mean(v_acc)
def HingeLoss(output, target):
# Reinterpretation of Kruschke's humble teacher
# loss = max(0,1-output * target)
#
# Input
# output : 1D tensor (raw prediction signal)
# target : 1D tensor (must be -1. and 1. labels)
hinge_loss = 1.-torch.mul(output, target)
hinge_loss[hinge_loss < 0] = 0.
return torch.sum(hinge_loss)
def HumbleTeacherLoss(output, target):
humble_loss = torch.mul(output, target)
humble_loss[humble_loss > 1] = 1
humble_loss = (1.-humble_loss)**2
return .5 * torch.sum(humble_loss)
def train(exemplars, labels, num_epochs, loss_type, typenum, c, phi, track_inc=1, verbose_params=False):
# Train model on a SHJ problem
#
# Input
# exemplars : [n_exemplars x dim tensor] rows are exemplars
# labels : [n_exemplars tensor] category labels
# num_epochs : number of passes through exemplar set
# loss_type : either 'll' or 'hinge'
# track_inc : track loss/output at these intervals
# verbose_params : print parameters when you are done
#
# Output
# trackers for epoch index, probability of right response, accuracy, and loss
# each is a list with the same length
n_exemplars = exemplars.size(0)
if model_type == 'mlp':
net = MLP(exemplars, phi)
elif model_type == 'alcove':
net = ALCOVE(exemplars, c, phi)
else:
assert False
if loss_type == 'loglik':
loss = torch.nn.BCEWithLogitsLoss(reduction='sum')
elif loss_type == 'hinge':
loss = HingeLoss
elif loss_type == 'mse':
loss = torch.nn.MSELoss(reduction='sum')
elif loss_type == 'humble':
loss = HumbleTeacherLoss
else:
assert False # undefined loss
optimizer = optim.SGD(net.parameters(), lr=lr_association)
if model_type == 'alcove':
optimizer = optim.SGD([{'params': net.w.parameters()}, {'params': [
net.attn], 'lr':lr_attn}], lr=lr_association)
v_epoch = []
v_loss = []
v_acc = []
v_prob = []
for epoch in range(1, num_epochs+1):
loss_epoch = update_batch(net, exemplars, labels, loss, optimizer)
# save results after each epoch
if epoch % track_inc == 0:
test_prob, test_acc = evaluate(net, exemplars, labels)
v_epoch.append(epoch)
v_loss.append(loss_epoch / float(n_exemplars))
v_acc.append(test_acc)
v_prob.append(test_prob)
# print results at the end of training
if epoch % 128 == 0:
print(f' epoch: {epoch}, train loss: {str(round(v_loss[-1], 4))}, train prob: {str(round(v_prob[-1], 4))}')
return v_epoch, v_prob, v_acc, v_loss
def create_dir(model_type, image_set, net_type, loss_type, num_epochs, plot):
# Creates directory and file names for plot/csv storage
if image_set == 'abstract':
d = 'ab'
sub_subdir_name = ''
elif image_set == 'PCA_abstract':
d = 'ab_PCA'
sub_subdir_name = f'/{image_set}'
else:
d = 'im'
sub_subdir_name = f'/{image_set}'
if plot:
dir_name = 'plots'
subdir_name = f'{dir_name}/{model_type}_{d}'
sub_subdir_name = subdir_name + sub_subdir_name
file_dir = f'{sub_subdir_name}/{net_type}{loss_type}_{num_epochs}'
title = f'{model_type} model: {d} stimulus_{net_type}{loss_type}'
else:
dir_name = 'csv'
subdir_name = f'{dir_name}/{model_type}_{d}'
file_dir = f'{subdir_name}/{net_type}__{image_set}_{loss_type}'
title = None
try:
os.mkdir(dir_name)
except FileExistsError:
pass
try:
os.mkdir(subdir_name)
except FileExistsError:
pass
if plot:
try:
os.mkdir(sub_subdir_name)
except FileExistsError:
pass
return file_dir, title
def create_plot(list_trackers, ntype, title, file_dir):
A = np.array(list_trackers) # nperms x ntype x 4 tracker types x n_iters
M = np.mean(A, axis=0) # ntype x 4 tracker types x n_iters
SE = scipy.stats.sem(A, axis=0) # ntype x 4 tracker types x n_iters
plt.figure(1)
for i in range(ntype):
if viz_se:
plt.errorbar(M[i, 0, :], M[i, 1, :],
yerr=SE[i, 1, :], linewidth=4./(i+1))
else:
plt.plot(M[i, 0, :], M[i, 1, :], linewidth=4./(i+1))
plt.suptitle(title)
plt.xlabel('Block')
plt.ylabel('Probability correct')
plt.legend(["Type " + str(s) for s in range(1, 7)])
plt.savefig(file_dir + '1.png')
plt.figure(2)
for i in range(ntype):
if viz_se:
plt.errorbar(M[i, 0, :], M[i, 3, :], yerr=SE[i, 3, :],
linewidth=4./(i+1)) # v is [tracker type x n_iters]
else:
# v is [tracker type x n_iters]
plt.plot(M[i, 0, :], M[i, 3, :], linewidth=4./(i+1))
plt.suptitle(title)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(["Type " + str(s) for s in range(1, 7)])
plt.savefig(file_dir + '2.png')
plt.show()
def trapezoidal_integral(f, a=0, b=128, step=1):
# Calculates an approximate integral from x=a to x=b
# using the trapezoidal rule.
#
# Input
# f: list of y values/datapoints corresponding to range x=(a,b)
# a: starting point/epoch (usually 0)
# b: ending point/epoch (usually 128)
# step: step size between points/epochs (usually 1)
#
# Output
# trapezoidal approximation of integral
n = (b - a) / step
delta_x = (b - a) / n
mul = delta_x / 2
b -= 1 # for index purposes
t = f[a] + f[b]
for i in range(1, b):
t += (f[i] * 2)
return t * mul
def average_integral(df, track):
# Calculates the average approximate integral over permutations.
perms = [0, 1, 2, 3, 4, 5]
average = 0
for perm in perms:
this_df = df.loc[df['Permutation'] == perm]
f = this_df['Probability Correct'].tolist()
integral = trapezoidal_integral(f, step=track)
average += integral
return average / len(perms)
def df_to_integral(df, track_inc):
# Calculates average integrals from dataframe. Saves
# in csv file (titled integrals.csv)
if df.at[1, 'Net'] == 'nan' or df.at[1, 'Net'] is None:
df['Net'] = 'NaN'
if df.at[1, 'c'] == 'nan' or df.at[1, 'c'] is None:
df['c'] = 'NaN'
args = ['Model', 'Net', 'Loss Type', 'Image Set', 'LR-Attention', 'LR-Association',
'c', 'phi', 'Type']
integrals = df.groupby(args).apply(
average_integral, track=track_inc).reset_index(name='Average Integral')
integral_dir = 'csv/integrals/integrals.csv'
try:
os.mkdir('csv/integrals')
except FileExistsError:
pass
if os.path.isfile(integral_dir):
with open(integral_dir, 'a') as csv:
csv.write('\n')
integrals.to_csv(csv, header=False)
else:
integrals.to_csv(integral_dir)
df_to_correlation(integrals)
def is_correct_ordering(df):
types = [1, 2, 3, 4, 5, 6]
integrals = []
for ty in types:
integral = df.loc[(df['Type'] == ty)]['Average Integral'].item()
integrals.append(integral)
order = scipy.stats.rankdata(integrals).tolist()
correct_orders = [[6, 5, 4, 3, 2, 1], [6, 5, 4, 2, 3, 1], [6, 5, 3, 4, 2, 1], [6, 5, 3, 2, 4, 1],
[6, 5, 2, 3, 4, 1], [6, 5, 2, 4, 3, 1]]
correct = False
for correct_order in correct_orders:
if order == correct_order:
correct = True
break
return correct
def correlation(df):
# Calculates Spearman's Rho and Kendall's Tau for integrals.
# Stores correlations in a csv (correlations/correlations.csv).
#
# Input
# df: a dataframe with integral data (eg. from integrals.csv)
types = [1, 2, 3, 4, 5, 6]
ranks = [6, 5, 3, 3, 3, 1]
integrals = []
for ty in types:
integral = df.loc[(df['Type'] == ty)]['Average Integral'].item()
integrals.append(integral)
s_calculation = scipy.stats.spearmanr(ranks, integrals)
k_calculation = scipy.stats.kendalltau(ranks, integrals)
return corr_object(s_calculation.correlation, s_calculation.pvalue,
k_calculation.correlation, k_calculation.pvalue)
def df_to_correlation(df):
if df.at[1, 'Net'] == 'nan' or df.at[1, 'Net'] is None:
df['Net'] = 'NaN'
if df.at[1, 'c'] == 'nan' or df.at[1, 'c'] is None:
df['c'] = 'NaN'
args = ['Model', 'Net', 'Loss Type', 'Image Set', 'LR-Attention', 'LR-Association',
'c', 'phi']
results = df.groupby(args).apply(correlation).reset_index(name='corr')
cols = args + ['Correct', 'Spearman Correlation',
'Spearman p-value', 'Kendall Correlation', 'Kendall p-value']
correlations = pd.DataFrame(index=range(0, results.shape[0]),
columns=cols)
correlations.iloc[0, 0:8] = results.iloc[0, 0:8]
corr_object1 = results.iloc[0, 8]
correlations.at[0, 'Spearman Correlation'] = corr_object1.s_corr
correlations.at[0, 'Spearman p-value'] = corr_object1.s_p
correlations.at[0, 'Kendall Correlation'] = corr_object1.k_corr
correlations.at[0, 'Kendall p-value'] = corr_object1.k_p
correlations.at[0, 'Correct'] = is_correct_ordering(df)
corr_dir = 'csv/correlations/correlations.csv'
try:
os.mkdir('csv/correlations')
except FileExistsError:
pass
if os.path.isfile(corr_dir):
with open(corr_dir, 'a') as csv:
csv.write('\n')
correlations.to_csv(csv, header=False)
else:
correlations.to_csv(corr_dir)
def run_simulation(model_type, image_set, net_type, loss_type, num_epochs, lr_association, lr_attn, c, phi,
track_inc, plot, save_results):
im_dir = 'data/' + image_set # assuming imagesets in a folder titled data
# ways of assigning abstract dimensions to visual ones
print("Retrieving exemplar stimuli")
list_perms = list(itertools.permutations([0, 1, 2]))
list_exemplars = []
for p in list_perms:
if image_set == 'abstract':
exemplars, labels_by_type = load_shj_abstract(loss_type, p)
elif image_set == 'PCA_abstract':
im_dir = 'shj_images_set1'
exemplars, labels_by_type = load_shj_abstract_PCA(
loss_type, net_type, im_dir, p)
else:
exemplars, labels_by_type = load_shj_images(
loss_type, net_type, im_dir, p)
# [n_exemplars x dim tensor],list of [n_exemplars tensor]
list_exemplars.append(exemplars)
# initialize DataFrame for translation to .csv
dim = list_exemplars[0].size(1)
print("Data loaded with " + str(dim) + " dimensions.")
# Run ALCOVE on each SHJ problem
list_trackers = np.zeros((36, num_epochs, 6)) # 36 = 6 perms * 6 types, 6 = number of columns
list_idx = 0
# all permutations of stimulus dimensions
start_time = time.time()
for pidx, exemplars in enumerate(list_exemplars):
print('Permutation ' + str(pidx))
for mytype in range(1, ntype+1): # from type I to type VI
print(' Training on type ' + str(mytype))
labels = labels_by_type[mytype-1]
v_epoch, v_prob, v_acc, v_loss = train(
exemplars, labels, num_epochs, loss_type, mytype, c, phi, track_inc)
results = np.array([[pidx]*num_epochs, [mytype]*num_epochs, v_epoch, v_prob, v_acc, v_loss])
results = results.T
list_trackers[list_idx] = results
list_idx += 1
# convert results to data frame and add config information
list_trackers = np.concatenate(list_trackers, axis=0)
df = pd.DataFrame(list_trackers, columns=['permutation', 'type', 'epoch', 'prob_correct', 'train_accuracy', 'train_loss'])
df['model_type'] = model_type
df['net_type'] = net_type
df['image_set'] = image_set
df['loss_type'] = loss_type
df['lr_association'] = lr_association
df['lr_attention'] = lr_attn
df['c'] = c
df['phi'] = phi
# reorder columns
new_index = ['model_type', 'net_type', 'image_set', 'loss_type', 'lr_association', 'lr_attention',
'c', 'phi', 'permutation', 'type', 'epoch', 'prob_correct', 'train_accuracy', 'train_loss']
df.reindex(columns=new_index)
# change types for certain columns
df['permutation'] = df['permutation'].astype(int)
df['type'] = df['type'].astype(int)
df['epoch'] = df['epoch'].astype(int)
# calculate timing
current_time = time.time()
elapsed_time = current_time - start_time
print(f'Time taken: {str(int(elapsed_time))}s')
# create directories/filenames for plots/.csv files and title for plots
# replace hyperparameters
if model_type == 'mlp':
lr_assoc_str = str(lr_association).replace('.', '-')
phi_str = str(phi).replace('.', '-')
filename = f'csv/{model_type}_{net_type}_{image_set}_{loss_type}_lr_assoc_{lr_assoc_str}_phi_{phi_str}.csv'
if model_type == 'alcove':
lr_assoc_str = str(lr_association).replace('.', '-')
lr_attn_str = str(lr_attn).replace('.', '-')
c_str = str(c).replace('.', '-')
phi_str = str(phi).replace('.', '-')
filename = f'csv/{model_type}_{net_type}_{image_set}_{loss_type}_lr_assoc_{lr_assoc_str}_lr_attn_{lr_attn_str}_c_{c_str}_phi_{phi_str}.csv'
# plot or save to .csv
if plot:
create_plot(list_trackers, ntype, title, file_dir)
if save_results:
print(f'Saving results to {filename}')
df.to_csv(filename, index=False, columns=new_index)
# Calculate and store average integrals for this setting
# df_to_integral(df, track_inc)
if __name__ == "__main__":
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# create argparse arguments for simulation parameters
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", help="Model (alcove or mlp)", type=str, default='alcove')
parser.add_argument("-d", "--dataset", help="Dataset (shj_images_set1, abstract, etc)",
type=str, default='shj_images_set1')
parser.add_argument("-n", "--net", help="Net type (resnet18, resnet152, vgg11", type=str, default='resnet18')
parser.add_argument("-l", "--loss", help="Loss (hinge, loglik, mse, humble)", type=str, default='humble')
parser.add_argument("-e", "--epochs", help="# Epochs (default 128)", type=int, default=128)
parser.add_argument("--lr_assoc", help="Learning rate - association (default 0.03)", type=float, default=0.03)
parser.add_argument("--lr_attn", help="Learning rate - attention (default 0.0033)", type=float, default=0.0033)
parser.add_argument("--c", help="c hyperparameter(default 6.5)", type=float, default=6.5)
parser.add_argument("--phi", help="phi hyperparameter (default 2.0)", type=float, default=2.0)
parser.add_argument('--save_results', action='store_true')
args = parser.parse_args()
model_type = args.model
image_set = args.dataset
net_type = args.net
loss_type = args.loss
num_epochs = args.epochs
lr_association = args.lr_assoc
lr_attn = args.lr_attn
c = args.c
phi = args.phi
if args.save_results:
save_results = True
else:
save_results = False
ntype = 6 # number of types in SHJ
viz_se = False # visualize standard error in plot
# options for output of results
plot = False # saves plots when true
track_inc = 1 # step size for recording epochs
POSITIVE, NEGATIVE = get_label_coding(loss_type)
# create directory for extracted features
try:
os.mkdir('pickle')
except FileExistsError:
pass
print(f'Config: {model_type}, {image_set}, {net_type}, {loss_type} loss, {num_epochs} epochs')
# set missing hyperparameters to None depending on simulation to be run
if model_type == 'alcove' and image_set == 'abstract': # data type = abstract, model = alcove
net_type = None
elif model_type == 'mlp' and image_set != 'abstract': # data type = images, model = mlp
c = None
elif model_type == 'mlp' and image_set == 'abstract': # data type = abstract, model = mlp
net_type = None
c = None
# run simulation
run_simulation(model_type, image_set, net_type, loss_type, num_epochs, lr_association, lr_attn, c, phi,
track_inc, plot, save_results)