-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcamera.js
465 lines (376 loc) · 13.3 KB
/
camera.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import * as posenet from '@tensorflow-models/posenet';
import { saveAs } from 'file-saver';
import JSZip from 'jszip';
import {drawBoundingBox, drawKeypoints, drawSkeleton} from './demo_util';
import $ from 'jquery';
import 'jquery-mask-plugin';
import dat from 'dat.gui';
import Stats from 'stats.js';
import flash from './static/flash.mp3';
// setup variables
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia;
let tick = new Audio(flash);
let timer;
const interval = 3000; // ms
let lastKeypoints;
const stats = new Stats();
let zip = new JSZip();
const videoWidth = $('#video').width();
const videoHeight = $('#video').height();
let canvas = $('#output')[0];
let canvas2 = $('#skeleton')[0];
const guiState = {
algorithm: 'multi-pose',
input: {
mobileNetArchitecture: '1',
outputStride: 16,
imageScaleFactor: 0.5,
},
singlePoseDetection: {
minPoseConfidence: 0.1,
minPartConfidence: 0.5,
},
multiPoseDetection: {
maxPoseDetections: 5,
minPoseConfidence: 0.12,
minPartConfidence: 0.07,
nmsRadius: 10.0,
},
output: {
showVideo: true,
showSkeleton: true,
showPoints: true,
showBoundingBox: false,
},
net: null,
};
/**
* Loads a the camera to be used in the demo
*
*/
async function setupCamera() {
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
throw new Error(
'Browser API navigator.mediaDevices.getUserMedia not available');
}
console.log("mediadevices", navigator.mediaDevices);
// List cameras id and microphones.
navigator.mediaDevices.enumerateDevices()
.then(function(devices) {
devices.forEach(function(device) {
if (device.kind=="videoinput") {
console.log(device.kind + ": " + device.label +
" id = " + device.deviceId);
}
});
})
const video = document.getElementById('video');
video.width = videoWidth;
video.height = videoHeight;
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': {
// this is my external webcam id, it will use another if it doesn't find it
deviceId: 'bea7c800aed2a9b16d1d5274906bed627b6b37b46ae534ea57f3e68010ee34d8',
facingMode: 'user',
width: videoWidth,
height: videoHeight,
},
});
//console.log("media devices",stream);
video.srcObject = stream;
return new Promise((resolve) => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
async function loadVideo() {
const video = await setupCamera();
video.play();
return video;
}
/**
* Sets up dat.gui controller on the top-right of the window
*/
function setupGui(cameras, net) {
guiState.net = net;
if (cameras.length > 0) {
guiState.camera = cameras[0].deviceId;
console.log("cameras found",cameras);
}
const gui = new dat.GUI({width: 300, closed: true});
const algorithmController =
gui.add(guiState, 'algorithm', ['single-pose', 'multi-pose']);
let input = gui.addFolder('Input');
const architectureController = input.add(
guiState.input, 'mobileNetArchitecture',
['1.01', '1.00', '0.75', '0.50']);
input.add(guiState.input, 'outputStride', [8, 16, 32]);
input.add(guiState.input, 'imageScaleFactor').min(0.2).max(1.0);
input.open();
let single = gui.addFolder('Single Pose Detection');
single.add(guiState.singlePoseDetection, 'minPoseConfidence', 0.0, 1.0);
single.add(guiState.singlePoseDetection, 'minPartConfidence', 0.0, 1.0);
let multi = gui.addFolder('Multi Pose Detection');
multi.add(guiState.multiPoseDetection, 'maxPoseDetections')
.min(1)
.max(20)
.step(1);
multi.add(guiState.multiPoseDetection, 'minPoseConfidence', 0.0, 1.0);
multi.add(guiState.multiPoseDetection, 'minPartConfidence', 0.0, 1.0);
multi.add(guiState.multiPoseDetection, 'nmsRadius').min(0.0).max(40.0);
multi.open();
let output = gui.addFolder('Output');
output.add(guiState.output, 'showVideo');
output.add(guiState.output, 'showSkeleton');
output.add(guiState.output, 'showPoints');
output.add(guiState.output, 'showBoundingBox');
output.open();
architectureController.onChange(function(architecture) {
guiState.changeToArchitecture = architecture;
});
algorithmController.onChange(function(value) {
switch (guiState.algorithm) {
case 'single-pose':
multi.close();
single.open();
break;
case 'multi-pose':
single.close();
multi.open();
break;
}
});
}
function setupFPS() {
stats.showPanel(0);
$('#stats').append(stats.dom);
$('#stats').children().css({position:'relative'});
}
function detectPoseInRealTime(video, net) {
let hiddenCanvas = document.createElement('canvas');
hiddenCanvas.width = videoWidth;
hiddenCanvas.height = videoHeight;
let ctxH = hiddenCanvas.getContext('2d');
let ctx = canvas.getContext('2d');
let ctx2 = canvas2.getContext('2d');
// since images are being fed from a webcam
const flipHorizontal = true;
canvas.width = videoWidth;
canvas.height = videoHeight;
canvas2.width = videoWidth;
canvas2.height = videoHeight;
async function poseDetectionFrame() {
if (guiState.changeToArchitecture) {
// Important to purge variables and free up GPU memory
guiState.net.dispose();
// Load the PoseNet model weights for either the 0.50, 0.75, 1.00, or 1.01
// version
guiState.net = await posenet.load(+guiState.changeToArchitecture);
guiState.changeToArchitecture = null;
}
// Begin monitoring code for frames per second
stats.begin();
// Scale an image down to a certain factor. Too large of an image will slow
// down the GPU
const imageScaleFactor = guiState.input.imageScaleFactor;
const outputStride = +guiState.input.outputStride;
let poses = [];
let minPoseConfidence;
let minPartConfidence;
switch (guiState.algorithm) {
case 'single-pose':
const pose = await guiState.net.estimateSinglePose(
video, imageScaleFactor, flipHorizontal, outputStride);
poses.push(pose);
minPoseConfidence = +guiState.singlePoseDetection.minPoseConfidence;
minPartConfidence = +guiState.singlePoseDetection.minPartConfidence;
break;
case 'multi-pose':
poses = await guiState.net.estimateMultiplePoses(
video, imageScaleFactor, flipHorizontal, outputStride,
guiState.multiPoseDetection.maxPoseDetections,
guiState.multiPoseDetection.minPartConfidence,
guiState.multiPoseDetection.nmsRadius);
minPoseConfidence = +guiState.multiPoseDetection.minPoseConfidence;
minPartConfidence = +guiState.multiPoseDetection.minPartConfidence;
break;
}
ctx.clearRect(0, 0, videoWidth, videoHeight);
ctx2.clearRect(0, 0, videoWidth, videoHeight);
if (guiState.output.showVideo) {
ctx.save();
ctx.scale(-1, 1);
ctx.translate(-videoWidth, 0);
ctx.drawImage(video, 0, 0, videoWidth, videoHeight);
ctx.restore();
}
// For each pose (i.e. person) detected in an image, loop through the poses
// and draw the resulting skeleton and keypoints if over certain confidence
// scores
// if (poses.length>0)
// poses = getMainPose(poses);
// clear hidden canvas before redrawing
ctxH.clearRect(0, 0, ctxH.canvas.width, ctxH.canvas.height);
console.log(ctxH.height);
poses.forEach(({score, keypoints}) => {
lastKeypoints = keypoints;
if (score >= minPoseConfidence) {
if (guiState.output.showSkeleton) {
drawSkeleton(keypoints, minPartConfidence, ctxH, 1, true);
//drawSkeleton(keypoints, minPartConfidence, ctx2, 1, true);
}
if (guiState.output.showPoints) {
drawKeypoints(keypoints, minPartConfidence, ctxH, 1, true);
//drawKeypoints(keypoints, minPartConfidence, ctx2, 1, true);
}
if (guiState.output.showBoundingBox) {
drawBoundingBox(keypoints, ctxH);
//drawBoundingBox(keypoints, ctx2);
}
}
});
// copy hidden canvas to webcam overlay and skeleton image
ctxH.globalAlpha = 1;
ctx.drawImage(ctxH.canvas,0,0);
ctx2.drawImage(ctxH.canvas,0,0);
// End monitoring code for frames per second
stats.end();
requestAnimationFrame(poseDetectionFrame);
}
poseDetectionFrame();
}
// choose the main pose by sholder length
function getMainPose(poses) {
let mainPose = [];
let width = 0.0;
poses.forEach((pose) => {
let leftShoulderX = parseFloat(pose.keypoints[5].position.x);
let rightShoulderX = parseFloat(pose.keypoints[6].position.x);
let newW = Math.abs(rightShoulderX-leftShoulderX);
if (width<newW) {
width = newW;
mainPose = pose;
}
});
return [mainPose];
}
function dataURItoBlob(dataURI) {
// convert base64/URLEncoded data component to raw binary data held in a string
var byteString;
if (dataURI.split(',')[0].indexOf('base64') >= 0)
byteString = atob(dataURI.split(',')[1]);
else
byteString = unescape(dataURI.split(',')[1]);
// separate out the mime component
var mimeString = dataURI.split(',')[0].split(':')[1].split(';')[0];
// write the bytes of the string to a typed array
var ia = new Uint8Array(byteString.length);
for (var i = 0; i < byteString.length; i++) {
ia[i] = byteString.charCodeAt(i);
}
return new Blob([ia], {type:mimeString});
}
export async function bindPage() {
// Load the PoseNet model weights with architecture 0.75
const net = await posenet.load(0.75);
document.getElementById('info').style.display = 'none';
document.getElementById('main').style.display = 'block';
let video;
try {
video = await loadVideo();
} catch (e) {
let info = document.getElementById('info');
info.textContent = 'this browser does not support video capture,' +
'or this device does not have a camera';
info.style.display = 'block';
throw e;
}
setupGui([], net);
setupFPS();
detectPoseInRealTime(video, net);
$('#stop_record').hide();
// radio single frame
$('#single').click(function() {
$('#single_picture').removeAttr('disabled');
$('#start_record').attr('disabled', 'disabled');
$('#stop_record').attr('disabled', 'disabled');
});
// radio multiple frame
$('#multiple').click(function() {
$('#single_picture').attr('disabled', 'disabled');
$('#start_record').removeAttr('disabled');
$('#stop_record').removeAttr('disabled');
});
// single picture
$('#single_picture').click(function() { singlePicture(); });
// start record
$('#start_record').click(function() { startRecording(); });
// stop record
$('#stop_record').click(function() { stopRecording(); });
// reset / new zip
$('#new_zip').click(function() { newZip(); });
// download zip
$('#download_zip').click(function() { saveZip(); });
}
function newZip() {
zip = new JSZip();
$('#image_counter').val(0);
$('#download_zip').attr('disabled','disabled');
$('#files').text('');
$('#total').text(0);
}
function startRecording() {
console.log('begin recording');
window.clearInterval(timer);
timer = setInterval( () => {tick.play(); saveCanvas()}, interval);
$('#stop_record').show();
$('#start_record').hide();
console.log('recording');
}
function stopRecording() {
window.clearInterval(timer);
console.log('stop recording');
$('#stop_record').hide();
$('#start_record').show();
}
function singlePicture() {
saveCanvas();
}
function saveZip() {
stopRecording();
console.log('saving zip');
zip.generateAsync({type: 'blob'})
.then(function(zip) {
saveAs(zip, 'capture_images.zip');
});
}
function saveCanvas() {
// enable download button
$('#download_zip').removeAttr('disabled');
// filename comes from pose name and number
let name = $('#filename').val() + '_' + $('#image_counter').val();
// convert to blob and add to zip
let blob = dataURItoBlob(canvas2.toDataURL('image/png'));
zip.file(`./imgs/${name}.png`, blob, {binary: true});
// save keypoints as json in case we want to use them
zip.file(`./json/${name}.json`, JSON.stringify(lastKeypoints,null,4));
// show thumbnails
let strFiles = $('#files').html();
strFiles += '<figure><img width=\'100\' height=\'100\' src=\'data:image/png;'+ canvas2.toDataURL('image/png') + '\'><figcaption>' + name + '</figcaption></figure>';
$('#files').html(strFiles);
// count files in zip
let total = 0;
zip.folder('').forEach(function(relativePath, file) {
//console.log(relativePath,file);
if (!file.dir) total++;
});
// update counters
$('#image_counter').val(+$('#image_counter').val()+1);
$('#total').text(total);
}
// start aplication
bindPage();