-
Notifications
You must be signed in to change notification settings - Fork 83
/
sample.py
120 lines (98 loc) · 3.06 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import tensorflow as tf
import sentencepiece as spm
from gpt2_model import Gpt2
import json
def argmax(logits):
return tf.argmax(logits)
def top_k_logits(logits, k):
if k == 0:
return logits
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits
)
# Nucleas Sampling (https://arxiv.org/pdf/1904.09751.pdf)
def top_p_logits(logits, p):
"""Took from OpenAI GPT-2 Implememtation"""
batch = tf.shape(logits)[0]
sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack([
tf.range(0, batch),
tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
], axis=-1)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(
logits < min_values,
tf.ones_like(logits) * -1e10,
logits,
)
class SequenceGenerator:
def __init__(self, model_path, model_param, vocab_path):
self.sp = None
self.model = None
self.model_path = model_path
self.model_param = model_param
self.vocab_path = vocab_path
def load_weights(self):
with open(self.model_param) as f:
param = json.load(f)
self.model = Gpt2(param['num_layers'],
param['d_model'],
param['num_heads'],
param['dff'],
param['max_seq_len'],
param['vocab_size'])
ckpt = tf.train.Checkpoint(model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, self.model_path, max_to_keep=1)
ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial()
print('Model weights loaded into memory')
self.sp = spm.SentencePieceProcessor()
self.sp.load(self.vocab_path)
def sample_sequence(self,
context=None,
seq_len=512,
bos=3,
eos=4,
temperature=1,
top_k=8,
top_p=8,
nucleus_sampling=True):
if context == None:
print("Give some context to model.................")
return
context = tf.expand_dims(([bos] + self.sp.encode_as_ids(context)), 0)
prev = context
output = context
past = None
for i in range(seq_len):
logits, past = self.model(prev, training=False, past=past)
# print(logits)
logits = logits[:, -1, :] / tf.cast(temperature, tf.float32)
# print(logits)
logits = top_k_logits(logits, k=top_k)
# print(logits)
if nucleus_sampling:
logits = top_p_logits(logits, p=top_p)
samples = tf.random.categorical(logits, num_samples=1, dtype=tf.int32)
# print(samples)
if tf.equal(samples, eos):
# print("Predicted end of sequence.")
break
# print("shape.........")
# print(tf.shape(output))
# print(tf.shape(samples))
output = tf.concat([output, samples], axis=-1)
prev = samples
# print(tf.shape(output))
# print(output)
# print("--------------------------")
result = tf.squeeze(output, axis=0)
pred = [int(i) for i in result]
generated_seq = self.sp.decode_ids(pred[1:])
generated_seq = generated_seq.replace("[SEP]", "").strip()
generated_seq = ' '.join(generated_seq.split())
return generated_seq