|
| 1 | +from abc import ABC, abstractmethod |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +from sklearn.linear_model import LinearRegression |
| 6 | +from sklearn.preprocessing import PolynomialFeatures |
| 7 | + |
| 8 | + |
| 9 | +class RewardModel(ABC): |
| 10 | + @abstractmethod |
| 11 | + def estimate(self, obs: np.ndarray, act: np.ndarray) -> np.ndarray: |
| 12 | + """Estimate the rewards for a given set of observations and actions. |
| 13 | +
|
| 14 | + :param obs: the observations for which to estimate the rewards, shape: (batch_size, |
| 15 | + obs_dim). |
| 16 | + :param act: the actions for which to estimate the rewards, shape: (batch_size,). |
| 17 | + :return: the estimated rewards. |
| 18 | + """ |
| 19 | + raise NotImplementedError |
| 20 | + |
| 21 | + |
| 22 | +class RewardFunctionModel(RewardModel): |
| 23 | + """A reward model that uses a given reward function to estimate rewards.""" |
| 24 | + |
| 25 | + def __init__(self, reward_function: callable) -> None: |
| 26 | + """ |
| 27 | + :param reward_function: a function that takes in observations and actions and returns rewards. |
| 28 | + """ |
| 29 | + self.reward_function = reward_function |
| 30 | + |
| 31 | + def estimate(self, obs: np.ndarray, act: np.ndarray) -> np.ndarray: |
| 32 | + if obs.ndim == 1: |
| 33 | + return self.reward_function(obs, act) |
| 34 | + else: |
| 35 | + return np.array([self.reward_function(o, a) for o, a in zip(obs, act)]) |
| 36 | + |
| 37 | + |
| 38 | +class RegressionBasedRewardModel(RewardModel): |
| 39 | + def __init__( |
| 40 | + self, |
| 41 | + obs: np.ndarray, |
| 42 | + act: np.ndarray, |
| 43 | + rew: np.ndarray, |
| 44 | + reward_model: str = "linear", |
| 45 | + model_params: dict = {}, |
| 46 | + ) -> None: |
| 47 | + """ |
| 48 | + :param obs: the observations for training the reward model, shape: (batch_size, obs_dim). |
| 49 | + :param act: the actions for training the reward model, shape: (batch_size,). |
| 50 | + :param rew: the rewards for training the reward model, shape: (batch_size,). |
| 51 | + :param reward_model: the type of reward model to use. For now, only linear, polynomial and mlp are supported. |
| 52 | + :param model_params: optional parameters for the reward model. |
| 53 | + """ |
| 54 | + supported_reward_models = ["linear", "polynomial", "mlp"] |
| 55 | + assert ( |
| 56 | + reward_model in supported_reward_models |
| 57 | + ), f"Only {supported_reward_models} supported for now." |
| 58 | + assert obs.ndim == 2, "Observations must have shape (batch_size, obs_dim)." |
| 59 | + assert ( |
| 60 | + obs.shape[0] == act.shape[0] == rew.shape[0] |
| 61 | + ), "The number of observations, actions, and rewards must be the same." |
| 62 | + |
| 63 | + self.obs = obs |
| 64 | + if act.ndim == 1: |
| 65 | + act = act.reshape(-1, 1) |
| 66 | + self.act = act |
| 67 | + if rew.ndim == 1: |
| 68 | + rew = rew.reshape(-1, 1) |
| 69 | + self.rew = rew |
| 70 | + self.model_params = model_params |
| 71 | + self.reward_model = reward_model |
| 72 | + self.poly_features = None |
| 73 | + |
| 74 | + if self.reward_model == "linear" or self.reward_model == "polynomial": |
| 75 | + self.model = LinearRegression() |
| 76 | + elif self.reward_model == "mlp": |
| 77 | + hidden_size = model_params.get("hidden_size", 64) |
| 78 | + activation = model_params.get("activation", "relu") |
| 79 | + act_cls = torch.nn.ReLU if activation == "relu" else torch.nn.Tanh |
| 80 | + self.model = torch.nn.Sequential( |
| 81 | + torch.nn.Linear(obs.shape[1] + act.shape[1], hidden_size), |
| 82 | + act_cls(), |
| 83 | + torch.nn.Linear(hidden_size, 1), |
| 84 | + ) |
| 85 | + |
| 86 | + def fit(self) -> None: |
| 87 | + model_in = np.concatenate((self.obs, self.act), axis=1) |
| 88 | + |
| 89 | + if self.reward_model == "mlp": |
| 90 | + optimizer = torch.optim.Adam(self.model.parameters()) |
| 91 | + criterion = torch.nn.MSELoss() |
| 92 | + for e in range(self.model_params.get("num_epochs", 1000)): |
| 93 | + optimizer.zero_grad() |
| 94 | + pred_rew = self.model(torch.tensor(model_in, dtype=torch.float32)) |
| 95 | + loss = criterion(pred_rew, torch.tensor(self.rew, dtype=torch.float32)) |
| 96 | + loss.backward() |
| 97 | + optimizer.step() |
| 98 | + |
| 99 | + elif self.reward_model == "polynomial": |
| 100 | + self.poly_features = PolynomialFeatures(degree=self.model_params.get("degree", 2)) |
| 101 | + self.model.fit(self.poly_features.fit_transform(model_in), self.rew) |
| 102 | + |
| 103 | + elif isinstance(self.model, LinearRegression): |
| 104 | + self.model.fit(np.concatenate((self.obs, self.act), axis=1), self.rew) |
| 105 | + |
| 106 | + def estimate(self, obs: np.ndarray, act: np.ndarray) -> np.ndarray: |
| 107 | + """Estimate the rewards for a given set of observations and actions. |
| 108 | +
|
| 109 | + :param obs: the observations for which to estimate the rewards, shape: (batch_size, |
| 110 | + obs_dim). |
| 111 | + :param act: the actions for which to estimate the rewards, shape: (batch_size,). |
| 112 | + :return: the estimated rewards, shape: (batch_size,). |
| 113 | + """ |
| 114 | + if act.ndim == 1: |
| 115 | + act = act.reshape(-1, 1) |
| 116 | + |
| 117 | + if isinstance(self.model, torch.nn.Module): |
| 118 | + with torch.no_grad(): |
| 119 | + return ( |
| 120 | + self.model( |
| 121 | + torch.tensor(np.concatenate((obs, act), axis=1), dtype=torch.float32) |
| 122 | + ) |
| 123 | + .numpy() |
| 124 | + .flatten() |
| 125 | + ) |
| 126 | + else: |
| 127 | + inputs = np.concatenate((obs, act), axis=1) |
| 128 | + if self.reward_model == "polynomial": |
| 129 | + inputs = self.poly_features.transform(inputs) |
| 130 | + return np.squeeze(self.model.predict(inputs)) |
0 commit comments