-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpbAuto_transfer_one_structure.py
628 lines (526 loc) · 29.9 KB
/
pbAuto_transfer_one_structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import tensorflow as tf
import numpy as np
import math
# import matplotlib.pyplot as plt
import scipy.io as sio
import random
import scipy.misc
import os
from tensorflow.python.training import saver
import tensorflow.contrib.layers as ly
from os.path import join as pjoin
from numpy import *
import numpy.matlib
import scipy.ndimage
import csv
import cv2
# Written by Ying Qu <[email protected]>
# This code is a demo code for our paper
# “Non-local Representation based Mutual Affine-Transfer Network for Photorealistic Stylization”, TPAMI 2021
# The code is for research purpose only
# All Rights Reserved
class betapan(object):
def __init__(self, input, lr_rate, p_rate, nNetLevel, epoch, is_adam,
vol_r, mu_r, sp_r, num_h1, num_h2, sr, config):
# initialize the input and weights matrices
self.input = input
self.mark = input.mark
self.initlrate = lr_rate
self.initprate = p_rate
self.epoch = epoch
self.nNetLevel = nNetLevel
self.num_h1 = num_h1
self.num_h2 = num_h2
self.is_adam = is_adam
self.vol_r = vol_r
self.mu_r = mu_r
self.sp_r = sp_r
self.input_content = input.content_reduced_scaled
self.input_style = input.style_reduced_scaled
self.meanc = input.meanc_scaled
self.means = input.means_scaled
self.dimc = input.dimc_scaled
self.dims = input.dims_scaled
self.col_content = input.col_content_scaled
self.col_style = input.col_style_scaled
self.sr = sr
with tf.name_scope('inputs'):
self.content = tf.placeholder(tf.float32, [None, input.dimc[2]], name='content_input')
self.style = tf.placeholder(tf.float32, [None, input.dims[2]], name='style_input')
self.sess = tf.Session(config=config)
with tf.variable_scope('content_decoder') as scope:
self.wCdecoder = {
'content_decoder_w1': tf.Variable(tf.truncated_normal([self.num_h1, self.num_h2], stddev=0.1)),
'content_decoder_w2': tf.Variable(tf.truncated_normal([1, self.dimc[2]], stddev=0.1)),
}
with tf.variable_scope('style_decoder') as scope:
self.wSdecoder = {
'style_decoder_w1': tf.Variable(tf.truncated_normal([self.num_h1, self.num_h2], stddev=0.1)),
'style_decoder_w2': tf.Variable(tf.truncated_normal([1, self.dims[2]], stddev=0.1)),
}
with tf.variable_scope('basic_decoder') as scope:
self.wCSdecoder = {
'basic_decoder_w1': tf.Variable(tf.truncated_normal([self.num_h2, self.num_h2], stddev=0.1)),
'basic_decoder_w2': tf.Variable(tf.truncated_normal([self.num_h2, self.dimc[2]], stddev=0.1)),
}
def compute_latent_vars_break(self, i, remaining_stick, v_samples):
# compute stick segment
stick_segment = v_samples[:, i] * remaining_stick
remaining_stick *= (1 - v_samples[:, i])
return (stick_segment, remaining_stick)
def variable_summaries(self,var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
# difference from tf 1.3 version to 0.9 version. the tf.layers.dense --> tf.contrib.layers.fully_connected
# tf.concat([],1) --> tf.concat(1,[])
def wct_tf(self,content, style, alpha=1):
content_t = tf.transpose(tf.squeeze(content,axis=0), (2, 0, 1))
style_t = tf.transpose(tf.squeeze(style,axis=0), (2, 0, 1))
[Cc, Hc, Wc] = content_t.shape
[Cs, Hs, Ws] = style_t.shape
# CxHxW -> CxH*W
content_flat = tf.reshape(content_t, (Cc, Hc * Wc))
style_flat = tf.reshape(style_t, (Cs, Hs * Ws))
# Content covariance
mc = tf.reduce_mean(content_flat, axis=1, keep_dims=True)
fc = content_flat - mc
eps = 1e-8
fcfc = tf.matmul(fc, fc, transpose_b=True) / (tf.cast(Hc * Wc, tf.float32) - 1.) + tf.eye(int(Cc)) * eps
# Style covariance
ms = tf.reduce_mean(style_flat, axis=1, keep_dims=True)
fs = style_flat - ms
fsfs = tf.matmul(fs, fs, transpose_b=True) / (tf.cast(Hs * Ws, tf.float32) - 1.) + tf.eye(int(Cs)) * eps
# tf.svd is slower on GPU, see https://github.com/tensorflow/tensorflow/issues/13603
with tf.device('/cpu:0'):
Sc, Uc, _ = tf.svd(fcfc)
Ss, Us, _ = tf.svd(fsfs)
# Filter small singular values
k_c = tf.reduce_sum(tf.cast(tf.greater(Sc, 1e-5), tf.int32))
k_s = tf.reduce_sum(tf.cast(tf.greater(Ss, 1e-5), tf.int32))
# Whiten content feature
Dc = tf.diag(tf.pow(Sc[:k_c], -0.5))
fc_hat = tf.matmul(tf.matmul(tf.matmul(Uc[:, :k_c], Dc), Uc[:, :k_c], transpose_b=True), fc)
# Color content with style
Ds = tf.diag(tf.pow(Ss[:k_s], 0.5))
fcs_hat = tf.matmul(tf.matmul(tf.matmul(Us[:, :k_s], Ds), Us[:, :k_s], transpose_b=True), fc_hat)
# Re-center with mean of style
fcs_hat = fcs_hat + ms
# Blend whiten-colored feature with original content feature
blended = alpha * fcs_hat + (1 - alpha) * (fc + mc)
# CxH*W -> CxHxW
blended = tf.reshape(blended, (Cc, Hc, Wc))
# CxHxW -> 1xHxWxC
blended = tf.expand_dims(tf.transpose(blended, (1, 2, 0)), 0)
return blended
def next_feed(self):
feed_dict = {self.style:self.input_style, self.content:self.input_content}
return feed_dict
def construct_stick_break(self,vsample, dim, stick_size):
size = dim[0]*dim[1]
size = int(size)
remaining_stick = tf.ones(size, )
for i in range(stick_size):
[stick_segment, remaining_stick] = self.compute_latent_vars_break(i, remaining_stick, vsample)
if i == 0:
stick_segment_sum_lr = tf.expand_dims(stick_segment, 1)
else:
stick_segment_sum_lr = tf.concat([stick_segment_sum_lr, tf.expand_dims(stick_segment, 1)],1)
return stick_segment_sum_lr
def construct_vsamples(self,uniform,wb,hsize):
concat_wb = wb
for iter in range(hsize - 1):
concat_wb = tf.concat([concat_wb, wb], 1)
v_samples = 1 - (1-uniform) ** (1.0 / concat_wb)
return v_samples
def encoder_uniform_h(self, x, reuse=False):
with tf.variable_scope('encoder_uniform_h') as scope:
if reuse:
tf.get_variable_scope().reuse_variables()
layer_11 = tf.contrib.layers.fully_connected(x, self.nNetLevel[0], activation_fn=None)
stack_layer_11 = tf.concat([layer_11, x], 1)
layer_12 = tf.contrib.layers.fully_connected(stack_layer_11, self.nNetLevel[1], activation_fn=None)
stack_layer_12 = tf.concat([layer_12, stack_layer_11], 1)
layer_13 = tf.contrib.layers.fully_connected(stack_layer_12, self.nNetLevel[2], activation_fn=None)
stack_layer_13 = tf.concat([layer_13, stack_layer_12], 1)
layer_14 = tf.contrib.layers.fully_connected(stack_layer_13, self.nNetLevel[2], activation_fn=None)
stack_layer_14 = tf.concat([layer_14, stack_layer_13], 1)
layer_15 = tf.contrib.layers.fully_connected(stack_layer_14, self.nNetLevel[2], activation_fn=None)
stack_layer_15 = tf.concat([layer_15, stack_layer_14], 1)
uniform = tf.contrib.layers.fully_connected(stack_layer_15, self.num_h1, activation_fn=None)
return stack_layer_12, uniform
def encoder_beta_h(self, x, reuse=False):
with tf.variable_scope('encoder_beta_h') as scope:
if reuse:
tf.get_variable_scope().reuse_variables()
layer_14 = tf.contrib.layers.fully_connected(x, self.nNetLevel[3], activation_fn=None)
stack_layer_14 = tf.concat([layer_14,x], 1)
layer_15 = tf.contrib.layers.fully_connected(stack_layer_14, self.num_h1, activation_fn=None)
stack_layer_15 = tf.concat([layer_15,stack_layer_14], 1)
wb = tf.contrib.layers.fully_connected(stack_layer_15, 1, activation_fn=None)
return wb
def encoder_vsamples_h(self, x, hsize, reuse=False):
stack_layer_12, uniform = self.encoder_uniform_h(x, reuse)
wb = self.encoder_beta_h(stack_layer_12, reuse)
uniform_sig = tf.nn.sigmoid(uniform)
wb_sp = tf.nn.softplus(wb)
v_samples = self.construct_vsamples(uniform_sig,wb_sp,hsize)
return v_samples, uniform, wb
def encoder_content(self, x, reuse=False):
v_samples, uniform, wb = self.encoder_vsamples_h(x, self.num_h1, reuse)
stick_content_h1 = self.construct_stick_break(v_samples, self.dimc, self.num_h1)
return stick_content_h1,uniform, wb
def encoder_style(self, x, reuse=False):
v_samples, uniform, wb = self.encoder_vsamples_h(x, self.num_h1, reuse)
stick_content_h1 = self.construct_stick_break(v_samples, self.dims, self.num_h1)
return stick_content_h1,uniform, wb
def decoder_content(self, x):
layer_1 = tf.matmul(x, self.wCdecoder['content_decoder_w1'])
layer_2 = tf.matmul(layer_1, self.wCSdecoder['basic_decoder_w1'])
layer_3 = tf.matmul(layer_2, self.wCSdecoder['basic_decoder_w2'])
layer_4 = tf.add(layer_3, self.wCdecoder['content_decoder_w2'])
return layer_4
def decoder_style(self, x):
layer_1 = tf.matmul(x, self.wSdecoder['style_decoder_w1'])
layer_2 = tf.matmul(layer_1, self.wCSdecoder['basic_decoder_w1'])
layer_3 = tf.matmul(layer_2, self.wCSdecoder['basic_decoder_w2'])
layer_4 = tf.add(layer_3, self.wSdecoder['style_decoder_w2'])
return layer_4
def t_mi_h(self, x, reuse=False):
h_size = x.get_shape().as_list()
with tf.variable_scope('t_rmi_h') as scope:
if reuse:
tf.get_variable_scope().reuse_variables()
layer1 = tf.layers.dense(x, h_size[3], activation=None, use_bias=True)
layer = tf.layers.dense(layer1, 1, activation=tf.nn.sigmoid, use_bias=False)
return layer
def gen_content(self, x, reuse=False):
encoder_lr_op, uniform, wb = self.encoder_content(x, reuse)
decoder_lr_op = self.decoder_content(encoder_lr_op)
return decoder_lr_op
def gen_style(self, x, reuse=False):
encoder_lr_op, uniform, wb = self.encoder_style(x, reuse)
decoder_lr_op = self.decoder_style(encoder_lr_op)
return decoder_lr_op
def gen_hidden_transfer(self, reuse=False):
content_h1, uniform_c, wb_c = self.encoder_content(self.content, reuse)
style_h1, uniform_s, wb_s= self.encoder_style(self.style, reuse)
content_s1 = tf.reshape(content_h1, [1, self.dimc[0], self.dimc[1], self.num_h1])
style_s1 = tf.reshape(style_h1, [1, self.dims[0], self.dims[1], self.num_h1])
cont_sty1 = (self.wct_tf(content_s1,style_s1))
cont_sty1 = tf.reshape(cont_sty1, [self.dimc[0] * self.dimc[1], self.num_h1])
out = self.decoder_style(cont_sty1)
return out
def gen_color_transfer(self, reuse=False):
content_h1, uniform_c, wb_c = self.encoder_content(self.content, reuse)
out = self.decoder_style(content_h1)
return out
def build_model(self):
# Reconstruction error for content image
y_pred_content = self.gen_content(self.content,False)
y_true_content = self.content
error_content = y_pred_content - y_true_content
content_loss_euc = tf.reduce_mean(tf.reduce_sum(tf.pow(error_content, 2)))
decoder_ch_op = tf.matmul(self.wCdecoder['content_decoder_w1'],self.wCSdecoder['basic_decoder_w1'])
decoder_ch_op2 = tf.matmul(decoder_ch_op,self.wCSdecoder['basic_decoder_w2'])
decoder_ch_add_op = tf.add(decoder_ch_op2,self.wCdecoder['content_decoder_w2'])
content_volume_loss = tf.reduce_mean(tf.matmul(tf.transpose(decoder_ch_add_op),decoder_ch_add_op))
## mutual information for hidden layer h
content_h, uniform_c, wb_c = self.encoder_content(self.content, reuse=True)
content_shuffle = tf.random_shuffle(self.content)
content_h_img = tf.reshape(content_h, [1, self.dimc[0], self.dimc[1], self.num_h1])
content_img = tf.reshape(self.content, [1, self.dimc[0], self.dimc[1], self.dimc[2]])
content_shuffle_img = tf.reshape(content_shuffle, [1, self.dimc[0], self.dimc[1], self.dimc[2]])
positive_samples_ch = tf.concat([content_img, content_h_img], -1)
negative_samples_ch = tf.concat([content_shuffle_img, content_h_img], -1)
positive_ch_scores = self.t_mi_h(positive_samples_ch)
negative_ch_scores = self.t_mi_h(negative_samples_ch, reuse=True)
eps = 0.00000001
positive_ch_scores = tf.clip_by_value(positive_ch_scores,eps,tf.reduce_max(positive_ch_scores))
negative_ch_scores = tf.clip_by_value(negative_ch_scores,eps,tf.reduce_max(negative_ch_scores))
content_loss_mi = -(tf.reduce_mean(-tf.nn.softplus(-positive_ch_scores))
-tf.reduce_mean(tf.nn.softplus(negative_ch_scores)))
# spatial sparse constraint for content image h
con_base_norm_h = tf.reduce_sum(content_h, 1, keepdims=True)+eps
con_sparse_h = tf.div(content_h, (con_base_norm_h))
con_loss_sparse = tf.reduce_mean(-tf.multiply(con_sparse_h, tf.log(tf.clip_by_value(con_sparse_h,eps,tf.reduce_max(con_sparse_h)))))
# con_base_norm_h = tf.clip_by_value(con_base_norm_h,eps,tf.reduce_max(con_base_norm_h))
# con_loss_sparse = tf.reduce_mean(-tf.multiply(con_sparse_h, tf.log(tf.clip_by_value(con_sparse_h,eps,tf.reduce_max(con_sparse_h)))))
# content total loss
content_loss = content_loss_euc #+ self.vol_r * content_volume_loss \
#+ self.sp_r * con_loss_sparse #+ self.mu_r * content_loss_mi
# updated parameters for the content image
theta_encoder_uniform_h = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder_uniform_h')
theta_encoder_beta_h = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder_beta_h')
theta_content_decoder = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='content_decoder')
theta_share_decoder = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='basic_decoder')
theta_rmi_h = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='t_rmi_h')
counter_c = tf.Variable(trainable=False, initial_value=0, dtype=tf.int32)
opt_c = ly.optimize_loss(loss=content_loss, learning_rate=self.initlrate,
optimizer=tf.train.AdamOptimizer if self.is_adam is True else tf.train.RMSPropOptimizer,
variables=theta_encoder_uniform_h+theta_encoder_beta_h+theta_content_decoder+theta_share_decoder+theta_rmi_h,
global_step=counter_c)
######################
#### Style image ####
######################
## Reconstruction error for content image
x_pred_s = self.gen_style(self.style, True)
x_true_s = self.style
error_s = x_pred_s - x_true_s
style_loss_euc = tf.reduce_mean(tf.reduce_sum(tf.pow(error_s, 2)))
decoder_sh_op = tf.matmul(self.wSdecoder['style_decoder_w1'],self.wCSdecoder['basic_decoder_w1'])
decoder_sh_op2 = tf.matmul(decoder_sh_op,self.wCSdecoder['basic_decoder_w2'])
decoder_sh_op_add = tf.add(decoder_sh_op2,self.wSdecoder['style_decoder_w2'])
style_volume_loss = tf.reduce_mean(tf.matmul(tf.transpose(decoder_sh_op_add),decoder_sh_op_add))
# mutual information for hidden layer h
style_h, uniform_s, wb_s = self.encoder_style(self.style, reuse=True)
style_shuffle = tf.random_shuffle(self.style)
style_h_img = tf.reshape(style_h, [1, self.dims[0], self.dims[1], self.num_h1])
style_img = tf.reshape(self.style, [1, self.dims[0], self.dims[1], self.dims[2]])
style_shuffle_img = tf.reshape(style_shuffle, [1, self.dims[0], self.dims[1], self.dims[2]])
positive_samples_sh = tf.concat([style_img, style_h_img], -1)
negative_samples_sh = tf.concat([style_shuffle_img, style_h_img], 3)
positive_sh_scores = self.t_mi_h(positive_samples_sh, reuse=True)
negative_sh_scores = self.t_mi_h(negative_samples_sh, reuse=True)
positive_sh_scores = tf.clip_by_value(positive_sh_scores,eps,tf.reduce_max(positive_sh_scores))
negative_sh_scores = tf.clip_by_value(negative_sh_scores,eps,tf.reduce_max(negative_sh_scores))
style_loss_mi = -(tf.reduce_mean(-tf.nn.softplus(-positive_sh_scores))
-tf.reduce_mean(tf.nn.softplus(negative_sh_scores)))
# spatial sparse constrint for style h
sty_base_norm_h = tf.reduce_sum(style_h, 1, keepdims=True)
sty_base_norm_h = tf.clip_by_value(sty_base_norm_h,eps,tf.reduce_max(sty_base_norm_h))
sty_sparse_h = tf.div(style_h, sty_base_norm_h)
sty_loss_sparse = tf.reduce_mean(-tf.multiply(sty_sparse_h, tf.log(tf.clip_by_value(sty_sparse_h,eps,tf.reduce_max(sty_sparse_h)))))
style_loss = style_loss_euc #+ self.vol_r * style_volume_loss \
#+ self.sp_r * sty_loss_sparse #+ self.mu_r * style_loss_mi
theta_style_decoder = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='style_decoder')
counter_s = tf.Variable(trainable=False, initial_value=0, dtype=tf.int32)
opt_s = ly.optimize_loss(loss=style_loss, learning_rate=self.initlrate,
optimizer=tf.train.AdamOptimizer if self.is_adam is True else tf.train.RMSPropOptimizer,
variables= theta_encoder_uniform_h+theta_encoder_beta_h+theta_style_decoder+theta_share_decoder +theta_rmi_h,
global_step=counter_s)
total_loss = content_loss + style_loss
opt_total = opt_c + opt_s
return content_loss, opt_c, style_loss, opt_s, content_volume_loss, content_loss_mi, style_loss_mi, total_loss, opt_total
def init_test_image(self):
self.input_content = self.input.content_reduced
self.input_style = self.input.style_reduced
self.meanc = self.input.meanc
self.means = self.input.means
self.dimc = self.input.dimc
self.dims = self.input.dims
self.col_content = self.input.col_content
self.col_style = self.input.col_style
def train(self, load_Path, save_dir, img_dir, loadLRonly, tol, index):
content_loss, opt_c, style_loss, opt_s, content_volume_loss, content_loss_entropy, style_loss_entropy, total_loss, opt_total = self.build_model()
self.sess.run(tf.global_variables_initializer())
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if os.path.exists(load_Path):
if loadLRonly:
# load part of the variables
vars = tf.contrib.slim.get_variables_to_restore()
variables_to_restore = [v for v in vars if v.name.startswith('encoder_uniform_h/')] \
+ [v for v in vars if v.name.startswith('encoder_beta_h/')] \
+ [v for v in vars if v.name.startswith('content_decoder/')] \
+ [v for v in vars if v.name.startswith('basic_decoder/')] \
+ [v for v in vars if v.name.startswith('style_decoder/')] \
+ [v for v in vars if v.name.startswith('t_rmi_h/')]
saver = tf.train.Saver(variables_to_restore)
load_file = tf.train.latest_checkpoint(load_Path)
if load_file==None:
print('No checkpoint was saved.')
else:
saver.restore(self.sess,load_file)
else:
# load all the variables
saver = tf.train.Saver(max_to_keep=1)
load_file = tf.train.latest_checkpoint(load_Path)
if load_file==None:
print('No checkpoint was saved.')
else:
saver.restore(self.sess, load_file)
else:
saver = tf.train.Saver(max_to_keep=1)
results_file_name = pjoin(save_dir,"sb_" + "lrate_" + str(self.initlrate)+ ".txt")
results_file = open(results_file_name, 'a')
feed_dict = self.next_feed()
sam_style = 10
sam_content = 10
rmse_total = zeros(self.epoch+1)
rmse_total[0] = 1
for epoch in range(self.epoch):
_, tloss = self.sess.run([opt_total,total_loss], feed_dict=feed_dict)
self.initlrate = self.initlrate * 0.9995
self.vol_r = self.vol_r * 0.9995
sloss = self.sess.run(style_loss, feed_dict=feed_dict)
closs = self.sess.run(content_loss, feed_dict=feed_dict)
if (epoch + 1) % 60 == 0:
# Report and save progress.
results = "epoch {}: total loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, tloss, self.initlrate)
print (results)
print ("\n")
results_file.write(results + "\n\n")
results_file.flush()
results = "epoch {}: content loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, closs, self.initlrate)
print (results)
print ("\n")
results_file.write(results + "\n\n")
results_file.flush()
results = "epoch {}: style loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, sloss, self.initlrate)
print (results)
print ("\n")
results_file.write(results + "\n\n")
results_file.flush()
lr_en_loss = self.sess.run(content_loss_entropy, feed_dict=feed_dict)
results = "epoch {}: lr en loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, lr_en_loss, self.initlrate)
print (results)
print ("\n")
results_file.write(results + "\n\n")
results_file.flush()
p_en_loss = self.sess.run(style_loss_entropy, feed_dict=feed_dict)
results = "epoch {}: pan en loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, p_en_loss, self.initprate)
print (results)
print ('\n')
results_file.write(results + "\n\n")
results_file.flush()
img_content = self.sess.run(self.gen_content(self.content, reuse=True), feed_dict=feed_dict) + self.meanc
sam_content = self.evaluation(img_content,self.col_content,'Content',epoch,results_file)
img_style = self.sess.run(self.gen_style(self.style, reuse=True), feed_dict=feed_dict) + self.means
sam_style = self.evaluation(img_style,self.col_style,'Style',epoch,results_file)
if (epoch+1)%500==0:
# saver = tf.train.Saver()
results_ckpt_name = pjoin(save_dir, "epoch_" + str(epoch) + "_sam_" + str(round(sam_style,3)) + ".ckpt")
save_path = saver.save(self.sess,results_ckpt_name)
results = "weights saved at epoch {}"
results = results.format(epoch)
print (results)
print ('\n')
if ((sam_style>tol) or (sam_content>tol)):
results = "epoch {}: total loss {:.12f} learing_rate {:.9f}"
results = results.format(epoch, tloss, self.initlrate)
print (results)
print ("\n")
results_file.write(results + "\n\n")
results_file.flush()
elif ((sam_style < tol) or (epoch == self.epoch - 1)):
# elif ((sam_style<tol) and (sam_content<tol) or (epoch==self.epoch-1)):
# saver = tf.train.Saver()
results_ckpt_name = pjoin(save_dir, "epoch_" + str(epoch) + "_sam_" + str(round(sam_style,3)) + ".ckpt")
save_path = saver.save(self.sess, results_ckpt_name)
if not os.path.exists(img_dir):
os.makedirs(img_dir)
self.init_test_image()
feed_dict = self.next_feed()
name_init = save_dir[:save_dir.find('_')]
name = name_init + self.mark + str(index)
print('training is done')
break;
return save_path
def evaluation(self,img_hr,img_tar,name,epoch,results_file):
# evalute the results
ref = img_tar*255.0
tar = img_hr*255.0
lr_flags = tar<0
tar[lr_flags]=0
hr_flags = tar>255.0
tar[hr_flags] = 255.0
diff = ref - tar;
size = ref.shape
rmse = np.sqrt( np.sum(np.sum(np.power(diff,2))) / (size[0]*size[1]));
results = name + " epoch {}: RMSE {:.12f} "
results = results.format(epoch, rmse)
print (results)
results_file.write(results + "\n")
results_file.flush()
# spectral loss
nom_top = np.sum(np.multiply(ref, tar),0)
nom_pred = np.sqrt(np.sum(np.power(ref, 2),0))
nom_true = np.sqrt(np.sum(np.power(tar, 2),0))
nom_base = np.multiply(nom_pred, nom_true)
angle = np.arccos(np.divide(nom_top, (nom_base)))
angle = np.nan_to_num(angle)
sam = np.mean(angle)*180.0/3.14159
results = name + " epoch {}: SAM {:.12f} "
results = results.format(epoch, sam)
print (results)
print ("\n")
results_file.write(results + "\n")
results_file.flush()
return sam
def postprocess(self,img):
img = img*255.0;
img = np.clip(img, 0, 255).astype('uint8')
# rgb to bgr
img = img[..., ::-1]
return img
def transfer(self, save_dir, filename,img_dir,index):
self.init_test_image()
feed_dict = self.next_feed()
if not os.path.exists(img_dir):
os.makedirs(img_dir)
gen_content = self.gen_content(self.content,reuse=False)
gen_style = self.gen_style(self.style,reuse=True)
gen_content_h,uniform_c, wb_c = self.encoder_content(self.content, reuse=True)
gen_style_h,uniform_s, wb_s = self.encoder_style(self.style, reuse=True)
saver = tf.train.Saver()
save_path = tf.train.latest_checkpoint(filename)
print(save_path)
if save_path == None:
print('No checkpoint was saved.')
else:
saver.restore(self.sess, save_path)
print(save_path + ' is loaded.')
name_init = save_dir[:save_dir.find('_')]
name= name_init + self.mark +str(index)
# save color transfer only
color_transfered = self.gen_color_transfer(reuse=True)
img_color = self.sess.run(color_transfered, feed_dict=feed_dict) + self.means
image_array_color = img_color.reshape((self.dimc[0], self.dimc[1], self.dimc[2]))
image_array_color = self.postprocess(image_array_color)
cv2.imwrite(img_dir + name + '_color_' + str(self.num_h1) + '_' + str(self.num_h2) + '_m' + str(
self.mu_r) + 's' + str(self.sp_r) + 'sr' + str(self.sr) + '.png', image_array_color)
# save wct on h
hidden_transfered = self.gen_hidden_transfer(True)
img_wct_h = self.sess.run(hidden_transfered,feed_dict=feed_dict) + self.means
image_array_wct_h = img_wct_h.reshape((self.dimc[0],self.dimc[1],self.dimc[2]))
image_array_wct_h = self.postprocess(image_array_wct_h)
cv2.imwrite(img_dir + name + '_wct_h_' + str(self.num_h1) + '_' + str(self.num_h2) + '_m' + str(self.mu_r) + 's' + str(self.sp_r) + 'sr'+ str(self.sr) + '.png', image_array_wct_h)
hidden_transfered_h1 = self.gen_hidden_transfer(True)
img_wct_h_all = self.sess.run(hidden_transfered_h1,feed_dict=feed_dict) + self.means
image_array_wct_h1 = img_wct_h_all.reshape((self.dimc[0],self.dimc[1],self.dimc[2]))
image_array_wct_h1 = self.postprocess(image_array_wct_h1)
cv2.imwrite(img_dir + name + '_wct_h1_' + str(self.num_h1) + '_' + str(self.num_h2) + '_m' + str(self.mu_r) + 's' + str(self.sp_r) + 'sr'+ str(self.sr) + '.png', image_array_wct_h1)
img_content = self.sess.run(gen_content,feed_dict=feed_dict) + self.meanc
image_array_content = img_content.reshape((self.dimc[0],self.dimc[1],self.dimc[2]))
image_array_content = self.postprocess(image_array_content)
cv2.imwrite(img_dir + name + '_content_' + str(self.num_h1) + '_' + str(self.num_h2) + '_m' + str(self.mu_r) + 's' + str(self.sp_r) + 'sr'+ str(self.sr) + '.png', image_array_content)
img_style = self.sess.run(gen_style,feed_dict=feed_dict) + self.means
image_array_style = img_style.reshape((self.dims[0],self.dims[1],self.dims[2]))
image_array_style = self.postprocess(image_array_style)
cv2.imwrite(img_dir + name + '_style_' + str(self.num_h1) + '_' + str(self.num_h2) + '_m' + str(self.mu_r) + 's' + str(self.sp_r) + 'sr'+ str(self.sr) + '.png', image_array_style)
# # # # save hidden layers
hidden_content1 = self.sess.run(gen_content_h, feed_dict=feed_dict)
hidden_content1_cube = np.reshape(hidden_content1,[self.dimc[0],self.dimc[1],self.num_h1])
hidden_style1 = self.sess.run(gen_style_h, feed_dict=feed_dict)
hidden_style1_cube = np.reshape(hidden_style1,[self.dims[0],self.dims[1],self.num_h1])
result = {'hidden_content1': hidden_content1_cube,
'hidden_style1': hidden_style1_cube}
sio.savemat(save_dir + "/rep_out.mat", result)