-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathLGAG.py
73 lines (61 loc) · 2.28 KB
/
LGAG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch.nn as nn
import torch
# 论文:EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation, CVPR2024
# 论文地址:https://arxiv.org/pdf/2405.06880
def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1):
# activation layer
act = act.lower()
if act == 'relu':
layer = nn.ReLU(inplace)
elif act == 'relu6':
layer = nn.ReLU6(inplace)
elif act == 'leakyrelu':
layer = nn.LeakyReLU(neg_slope, inplace)
elif act == 'prelu':
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
elif act == 'gelu':
layer = nn.GELU()
elif act == 'hswish':
layer = nn.Hardswish(inplace)
else:
raise NotImplementedError('activation layer [%s] is not found' % act)
return layer
class LGAG(nn.Module):
def __init__(self, F_g, F_l, F_int=16, kernel_size=3, groups=1, activation='relu'):
super(LGAG, self).__init__()
if kernel_size == 1:
groups = 1
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=kernel_size, stride=1, padding=kernel_size // 2, groups=groups,
bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=kernel_size, stride=1, padding=kernel_size // 2, groups=groups,
bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.activation = act_layer(activation, inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.activation(g1 + x1)
psi = self.psi(psi)
return x * psi
if __name__ == '__main__':
# 示例输入
g = torch.randn(1, 32, 64, 64)
x = torch.randn(1, 64, 64, 64)
# 实例化LGAG
lgag = LGAG(F_g=32, F_l=64)
# 打印输入的shape
print("输入 g 的 shape:", g.shape)
print("输入 x 的 shape:", x.shape)
# 前向传播并打印输出的shape
output = lgag(g, x)
print("输出的 shape:", output.shape)