-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy path(arXiv 2021) S2Attention.py
81 lines (63 loc) · 2.21 KB
/
(arXiv 2021) S2Attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import torch
from torch import nn
from torch.nn import init
# 论文地址:https://arxiv.org/pdf/2108.01072
# 论文:S2-MLPv2: Improved Spatial-Shift MLP Architecture for Vision
def spatial_shift1(x):
b,w,h,c = x.size()
x[:,1:,:,:c//4] = x[:,:w-1,:,:c//4]
x[:,:w-1,:,c//4:c//2] = x[:,1:,:,c//4:c//2]
x[:,:,1:,c//2:c*3//4] = x[:,:,:h-1,c//2:c*3//4]
x[:,:,:h-1,3*c//4:] = x[:,:,1:,3*c//4:]
return x
def spatial_shift2(x):
b,w,h,c = x.size()
x[:,:,1:,:c//4] = x[:,:,:h-1,:c//4]
x[:,:,:h-1,c//4:c//2] = x[:,:,1:,c//4:c//2]
x[:,1:,:,c//2:c*3//4] = x[:,:w-1,:,c//2:c*3//4]
x[:,:w-1,:,3*c//4:] = x[:,1:,:,3*c//4:]
return x
class SplitAttention(nn.Module):
def __init__(self,channel=512,k=3):
super().__init__()
self.channel=channel
self.k=k
self.mlp1=nn.Linear(channel,channel,bias=False)
self.gelu=nn.GELU()
self.mlp2=nn.Linear(channel,channel*k,bias=False)
self.softmax=nn.Softmax(1)
def forward(self,x_all):
b,k,h,w,c=x_all.shape
x_all=x_all.reshape(b,k,-1,c) #bs,k,n,c
a=torch.sum(torch.sum(x_all,1),1) #bs,c
hat_a=self.mlp2(self.gelu(self.mlp1(a))) #bs,kc
hat_a=hat_a.reshape(b,self.k,c) #bs,k,c
bar_a=self.softmax(hat_a) #bs,k,c
attention=bar_a.unsqueeze(-2) # #bs,k,1,c
out=attention*x_all # #bs,k,n,c
out=torch.sum(out,1).reshape(b,h,w,c)
return out
class S2Attention(nn.Module):
def __init__(self, channels=512 ):
super().__init__()
self.mlp1 = nn.Linear(channels,channels*3)
self.mlp2 = nn.Linear(channels,channels)
self.split_attention = SplitAttention()
def forward(self, x):
b,c,w,h = x.size()
x=x.permute(0,2,3,1)
x = self.mlp1(x)
x1 = spatial_shift1(x[:,:,:,:c])
x2 = spatial_shift2(x[:,:,:,c:c*2])
x3 = x[:,:,:,c*2:]
x_all=torch.stack([x1,x2,x3],1)
a = self.split_attention(x_all)
x = self.mlp2(a)
x=x.permute(0,3,1,2)
return x
if __name__ == '__main__':
input=torch.randn(50,512,7,7)
block = S2Attention(channels=512)
output=block(input)
print(output.shape)