forked from EISALab/GB-RFSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RFSMtoolsV3.py
437 lines (393 loc) · 19.3 KB
/
RFSMtoolsV3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from pathlib import Path
import networkx as nx
import matplotlib.pyplot as plt
from datetime import timedelta,date,datetime
import time
import rioxarray
import rasterio
import xarray as xr
from osgeo import gdal, ogr, osr, os
from IPython.display import clear_output
from xrspatial import zonal_stats
import gzip
import urllib
try:
from StringIO import StringIO ## for Python 2
except ImportError:
from io import StringIO ## for Python 3
import cfgrib
from rasterstats import zonal_stats
import warnings
warnings.filterwarnings('ignore')
import pydot
from networkx.drawing.nx_pydot import graphviz_layout
class ncep():
def __init__(self, workspace,date,dem, source='NCEP/PecipRate'):
self.workdir = workspace
self.path = os.path.join(self.workdir,'RadarPrecip')
if not os.path.isdir(self.path):
os.mkdir(self.path)
os.chdir(self.path)
self.date = date
self.source = source
tif = xr.open_dataset(dem)
self.crs = tif.rio.crs.wkt
self.min_x = min(tif.x.data)
self.min_y = min(tif.y.data)
self.max_x = max(tif.x.data)
self.max_y = max(tif.y.data)
self.timestep = 20
def get_url(self):
date=self.date
if self.source == 'NCEP/PecipRate':
self.dt = timedelta(minutes=self.timestep)
url_ = "http://mtarchive.geol.iastate.edu/{:04d}/{:02d}/{:02d}/mrms/ncep/PrecipRate/PrecipRate_00.00_{:04d}{:02d}{:02d}-{:02d}{:02d}00.grib2.gz".format(
date.year, date.month, date.day, date.year, date.month, date.day, date.hour,date.minute)
if self.source == 'NCEP/QPE01hH':
self.dt = timedelta(hours=1)
url_ = "http://mtarchive.geol.iastate.edu/{:04d}/{:02d}/{:02d}/mrms/ncep/GaugeCorr_QPE_01H/GaugeCorr_QPE_01H_00.00_{:04d}{:02d}{:02d}-{:02d}{:02d}00.grib2.gz".format(
date.year, date.month, date.day, date.year, date.month, date.day, date.hour,date.minute)
return url_
def dl(self):
date=self.date
url = self.get_url()
filename = url.split("/")[-1][:-3]
if not os.path.isfile(filename):
print('dl NEXRAD')
with urllib.request.urlopen(url) as response:
with gzip.GzipFile(fileobj=response) as uncompressed:
file_content = uncompressed.read()
with open(filename, 'wb') as f:
f.write(file_content)
def clip(self):
filename=self.get_url().split("/")[-1][:-3]
ingrib = os.path.join(self.path,filename)
ds = xr.open_dataset(ingrib, engine="cfgrib", decode_coords="all")
#precipitation radar dataset misses the correct ESPG factory code
xds = ds.rio.write_crs(4326)
xds = xds.rio.reproject(self.crs) #this lines takes few seconds
subset_xds= xds.rio.clip_box(minx=self.min_x,miny=self.min_y,maxx=self.max_x,maxy=self.max_y)
if sum(sum(subset_xds.unknown.data))>0:
# Un/Comment to store rainfall
# name = str(date.year) + str(date.month)+str(date.day)+str(date.hour)+".tif"
# subset_xds.rio.to_raster(name)
rain = np.average(subset_xds.unknown.data)
rain = rain*(self.timestep/60) #the unit is mm/hour and the dt is 4 minutes
else:
rain = 0
return rain
class graph():
def __init__ (self, tables, workspace, DOI=None):
self.net = pd.read_excel(tables, sheet_name ='sheet_Graph_df')
self.basins = pd.read_excel(tables, sheet_name ='sheet_Subbasins')
self.basins['child'] = self.basins['Node'].apply(lambda x: x.replace('subbasin', 'L1'))
if sum(self.basins['CN'].isna())>0 :
self.basins['CN'] = self.basins['CN'].fillna(84)
print('missing CN values are set to 84')
self.source = workspace
self.DOI = DOI
def sub_graph(self,DG, N):
up = [n for n in nx.traversal.bfs_tree(DG, N, reverse=True)]
down = [n for n in nx.traversal.bfs_tree(DG, N, reverse=False) if (n != N)]
self.NDOI = up + down
subDG = nx.DiGraph((u, v, e) for u,v,e in DG.edges(data=True) if u in self.NDOI)
nx.set_node_attributes(subDG, dict([(u,v) for u,v in zip(self.net.Node, self.net.surface) if u in self.NDOI]), name='surface')
return subDG
def dry_net(self):
DG = nx.DiGraph()
weights = list(zip(self.net.Node.values,self.net.child.values, self.net['volume-m3'].values))
DG.add_weighted_edges_from(weights)
weights_subbasins = list(zip(self.basins.Node.values,self.basins.child.values,[0]*len(self.basins)))
nx.set_node_attributes(DG, dict(zip(self.net.Node, self.net.surface)), name="surface")
DG.add_weighted_edges_from(weights_subbasins)
if self.DOI:
DG = self.sub_graph(DG.copy(),self.DOI)
self.DG = DG
return DG
def get_Q(self, acc_rain,CN):
S = (25400/CN) - 254
Ia = 0.2*S
if acc_rain<=Ia:
Q=0
if acc_rain>Ia:
Q=((acc_rain-Ia)**2)/(acc_rain+(0.8*S))
return Q
def get_rain_edges(self, rain, acc_rain):
if self.DOI:
basins = self.basins[self.basins.child.isin(self.NDOI)]
else:
basins=self.basins
basins['Q'] = basins['CN'].apply(lambda x: self.get_Q(acc_rain, x))
basins['R'] = basins['Q']/acc_rain
basins['runoff'] = basins.apply(lambda x: rain*x.R*x.AREA*0.001, axis=1) #(cubic meter)
R = ['R']*len(basins)
rain_edges = list(zip(R,basins.Node,basins.runoff))
self.rain_edges = rain_edges
return (rain_edges)
def control_merge(self, DG):
'''if any merged filling in nodes (L2>)'''
nodes = list(DG.successors('R'))
merges =[ m for m in [n for n in nodes if n.startswith('L')] if int(m.split("-")[0].split('L')[1])>1]
M=len(merges)
sp = dict(nx.all_pairs_shortest_path(DG))
while M>0:
temp=[]
for node in merges:
surface = DG.nodes[node]['surface']
#all the predecessors of a node if there surface is lower than the node
up = [n for n in nx.traversal.bfs_tree(DG, node, reverse=True)if (n != node) &(n.startswith('L'))]
up = [n for n in up if DG.nodes[n]['surface']<surface]
# predecessors that all nodes in their path to node have lower surface
up_ = [n for n in up if
(max([DG.nodes[j]['surface'] for j in sp[n][node] if j!=node])<surface)
]
# predecessors that have more than 0 capacity
up__= [n for n in up_ if
DG[n][list(DG.successors(n))[0]]['weight']<0
]
surfaces = [DG.nodes[n]['surface'] for n in up__]
sorted_up = [x for _,x in sorted(zip(surfaces,up__)) ]
cap = [DG[n][list(DG.successors(n))[0]]['weight'] for n in sorted_up]
L=int(node.split("-")[0].split('L')[1])
prereq = sorted_up
temp.append(len(prereq))
if len(prereq)>0:
WRn = DG['R'][node]['weight']
DG.remove_edge('R',node)
for n in prereq:
# Move rain from node to n
cap = abs(DG[n][list(DG.successors(n))[0]]['weight'])
if DG.has_edge('R',n):
cap_ = max(cap-DG['R'][n]['weight'], 0)
Wmerge_prereq = min(cap_,WRn)
Wmerge_prereq = Wmerge_prereq + DG['R'][n]['weight']
DG.remove_edge('R',n)
DG.add_weighted_edges_from([('R',n,Wmerge_prereq)])
else:
Wmerge_prereq = min(cap,WRn)
DG.add_weighted_edges_from([('R',n,Wmerge_prereq)])
WRn = WRn - Wmerge_prereq
#print('The runoff volume of {} is added to {}'.format(WRn,n))
if WRn>0:
DG.add_weighted_edges_from([('R',node,WRn)])
#print('No prereg could handle merge of {} overflow remains {}'.format(node, WRn))
M=0
#if any(temp):M = max(temp)
nodes = list(DG.successors('R'))
merges =[ m for m in [n for n in nodes if n.startswith('L')] if int(m.split("-")[0].split('L')[1])>1]
return DG.copy()
def fill_spill(self, wetDG):
nodes = list(wetDG.successors('R'))
updateG = wetDG.copy()
updateG.remove_node('R')
spill = 0
while len(nodes)>0:
'''update the network to prevent bubble merging'''
'''find edges that connect R to merged depressions in the WetDG'''
wetDG = self.control_merge(wetDG)
nodes = list(wetDG.successors('R'))
spill+= 1
for n in nodes:
if n == 'outfall': continue
child_n = list(wetDG.successors(n))[0]
WRn = wetDG['R'][n]['weight']
WnCn = wetDG[n][child_n]['weight']
un_WRCn = max(0, WRn + WnCn) #spill from n to n-child
un_WnCn = min(0, WRn + WnCn) #reduced capacity of n if it is partially filled (no-spill)
updateG.add_weighted_edges_from([(n,child_n,un_WnCn)])
if updateG.has_edge('R',child_n):
new_un_WRCn = un_WRCn + updateG['R'][child_n]['weight']
un_WRCn = new_un_WRCn
updateG.remove_edge('R',child_n)#new line#
if un_WRCn> 0 :
updateG.add_weighted_edges_from([('R',child_n,un_WRCn)])
#### merge correction to acount for prereqities depressions before merging
if updateG.has_node('R') == False:
nodes = []
#print('end of spilling')
if updateG.has_node('R') == True:
# print('has node R')
wetDG = updateG.copy()
updateG.remove_node('R')
nodes = list(wetDG.successors('R'))
#print(nodes)
return updateG
class post_process():
def __init__(self, simulation, tables,ncfile, road_raster=None):
self.sim = simulation #simulation is a dict
self.wnet = pd.DataFrame(self.sim)
self.tnet = pd.read_excel(tables, sheet_name ='sheet_Graph_df')
self.dnet = self.tnet[(self.tnet.Node.isin(self.wnet.Node)) & (self.tnet.Node.str.startswith('L'))]
self.ncdf = xr.open_dataset(ncfile)
vol = pd.read_excel(tables, sheet_name ='sheet_Volume2Depth')
vol = vol.replace(0, np.nan)
vol['step0'] = 0
vol.index = vol.Node
vol = vol.drop(columns = ["VALUE", "Node","Unnamed: 0"], errors='ignore')
self.vol = vol.T
self.rr = np.ndarray(self.ncdf['watershed'][:,:,1].data.shape)
if road_raster != None:
self.rr = rasterio.open(road_raster).read_masks(1)
def get_inundation_step(self):
net = self.dnet[self.dnet.Node.str.startswith('L')][['Node', 'volume-m3']]
fnet = pd.merge(net,self.wnet, on='Node')
fnet['filled'] = abs(fnet['volume-m3']) - abs(fnet['remained-volume-m3'])
fnet ['step'] = fnet.apply(lambda row: self.get_nearest_step(row.Node, row.filled), axis=1)
self.fnet = fnet
return fnet
def find_nearest(self, array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
def get_nearest_step(self, node, value):
try:
a = self.vol[node][self.vol[node].notna()]
return int(float(a.index[self.find_nearest(value, a)][4:]))
except KeyError:
return 0
def get_net(self, netdf, edge_feature):
DG = nx.DiGraph()
weights = list(zip(netdf.Node.values,netdf.child.values, netdf[edge_feature].values))
DG.add_weighted_edges_from(weights)
return(DG)
def plot_net(self,net,name):
plt.figure(figsize=(30,20))
pos = graphviz_layout(net, prog="sfdp")
nx.draw(net,pos=pos,with_labels=True,node_size=50, font_size = 40,arrowsize=40, arrowstyle='simple')
labels = nx.get_edge_attributes(net,'weight')
labels2 = {}
for k,v in labels.items():
labels2[k] = format(v*-1,".2f")
nx.draw_networkx_edge_labels(net,pos,edge_labels=labels2)
plt.savefig(r'C:\Research\Notebooks\Clowder RFSM\{}'.format(name),dpi=300)
plt.show()
def to_depth(self,i):
return self.mapping[int(i)]
def net_to_tif(self, fnet, tables):
ncdf = self.ncdf
inundation = np.ndarray(ncdf['watershed'][:,:,1].data.shape)
for l in [1,2,3,4,5,6,7]:
surface = np.nan_to_num(ncdf['surface'][:,:,l].data,0)
bottom = np.nan_to_num(ncdf['bottom'][:,:,l].data,0)
watershed_ar = ncdf['watershed'][:,:,l].data
if np.amax(ncdf['watershed'][:,:,l].data)>0:
tnet = self.tnet[self.tnet.Node.str.startswith('L'+str(l))]
tnet['watershed'] = tnet.Node.apply(lambda x: int(x[3:]))
wsh = np.unique(watershed_ar).astype(int)
if self.rr.any():
rrwsh = np.unique(watershed_ar[np.where(self.rr!= 0)]).astype(int)
names = ['L'+str(int(l))+'-'+str(int(x)) for x in rrwsh if x>0]
rest = np.array(tnet['watershed'])
fnet_l = fnet[fnet.Node.isin(names)][['Node','step']]
fnet_l['watershed'] = fnet_l['Node'].apply(lambda x: int(x[3:]))
fnet_l['depth'] = fnet_l['step']*0.1524#step_size
source = fnet_l['watershed'].values
out = fnet_l['depth'].values
rest_ = np.array((list(set(rest)-set(source))))
mapping1 = {source[a]:out[a] for a in range(len(fnet_l))}
mapping2 = {rest_[a]:0 for a in range(len(rest_))}
mapping3 = {0:0}
self.mapping = {**mapping1, **mapping2, **mapping3}
to_depthv = np.vectorize(self.to_depth, otypes=[float])
inshape=watershed_ar.shape
depth = np.nan_to_num(to_depthv(watershed_ar),0)
top = np.minimum(bottom+depth,surface)
thresh = np.amax(depth)
inund = np.clip(top - np.nan_to_num(ncdf['dem'][:,:,l].data,0), a_min=0, a_max=100)
inundation = inundation+inund
return inundation
def array_to_tif(rasterfn,newRasterfn,array):
raster = gdal.Open(rasterfn)
geotransform = raster.GetGeoTransform()
originX = geotransform[0]
originY = geotransform[3]
pixelWidth = geotransform[1]
pixelHeight = geotransform[5]
cols = raster.RasterXSize
rows = raster.RasterYSize
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_Float32)
outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
outRasterSRS = osr.SpatialReference()
outRasterSRS.ImportFromWkt(raster.GetProjectionRef())
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
class manual_source(graph):
def __init__(self, tables, workspace, source_node, overflow):
self.G = graph(tables, workspace)
R = ['R']*len(source_node)
self.rain_edges = list(zip(R,source_node,overflow))
print(self.rain_edges)
def run(self):
DG = self.G.dry_net()
DG.add_weighted_edges_from(self.rain_edges)
self.newDG = self.G.fill_spill(DG)
df = nx.to_pandas_edgelist(self.newDG).rename(columns={'source':'Node', 'target':'child', 'weight':'remained-volume-m3'})
return df.to_dict()
class RFSM(graph,ncep, post_process):
def __init__(self,start, end, dem, tables, workspace, ncdf,road_raster,DOI=None, rain_source='NCEP/PecipRate'):
self.time_format = "%Y-%m-%d %H:%M:%S"
self.start = datetime.strptime(start, self.time_format)
self.end=datetime.strptime(end, self.time_format)
self.dem=dem
self.workspace=workspace
self.net = pd.read_excel(tables, sheet_name ='sheet_Graph_df')
self.tables=tables
self.ncdf = ncdf
self.road_raster = road_raster
self.rr = np.nan_to_num(xr.open_dataset(road_raster).band_data.data[0],0)
self.segs = list(np.unique(self.rr).astype(int))
self.segs.remove(0)
self.rain_source = rain_source
self.DOI = DOI
def getsegment(self,inund,t,seg):
max_depth = max((inund[np.where(self.rr==seg)]))
area = 9*len(inund[np.where((self.rr==seg)&(inund>0))])
return [seg, t, max_depth, area]
def run(self):
acc_rain = 0
t=self.start
self.G = graph(self.tables, self.workspace, self.DOI)
DG = self.G.dry_net()
i=1
simulation = dict()
rrinund=pd.DataFrame()
last_depths = 0
thresh=0
self.ncep_rain = pd.DataFrame()
while t<self.end:
self.ncep = ncep(self.workspace, t, self.dem, self.rain_source )
try:
self.ncep.dl()
rain = self.ncep.clip()
except:
rain = rain
print('failed NEXRAD dl')
self.ncep_rain = self.ncep_rain.append([[rain,t]])
print(t,'-----> accumulated rain:{}----instantaneous rain:{}'.format(acc_rain,rain))
acc_rain += rain
rain_edges = self.G.get_rain_edges(rain, acc_rain)#based on cn gets the runoff to each subbasin
DG.add_weighted_edges_from(rain_edges)
newDG = self.G.fill_spill(DG)
DG = newDG.copy()
df = nx.to_pandas_edgelist(DG).rename(columns={'source':'Node', 'target':'child', 'weight':'remained-volume-m3'})
simulation[t] = df.to_dict()
t = self.ncep.date + self.ncep.dt
i += 1
pp = post_process(df.to_dict(),self.tables, self.ncdf,self.road_raster)
wetdf = pp.get_inundation_step()
depths = wetdf.step.values
thresh = max(depths-last_depths)
if thresh>0:
inund = pp.net_to_tif(wetdf,self.tables)
rrinund = rrinund.append([self.getsegment(inund,t,seg) for seg in self.segs])
last_depths = depths
self.simulation = simulation
self.road_inundation = rrinund.rename(columns={0:'segment',1:'time',2:'max_depth',3:'area'})
return simulation, self.road_inundation