-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
500 lines (441 loc) · 19.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
from io import open
import logging
import pdb
import random
import os
import numpy as np
import shutil
from collections import Counter
import tarfile
import json
import random
from collections import defaultdict
import io
import gzip
import sys
import argparse
np.random.seed(7)
random.seed(7)
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
def check_num_records(filename):
records = 0
with open(filename, 'r', encoding='utf-8') as fin:
for line in fin:
if line.strip() == '':
records += 1
logging.info('{} records in {}'.format(records, filename))
return records
def check_num_records_by_content(filehandle, filename):
records = 0
for line in filehandle:
line = line.decode('utf-8')
if line.strip() == '':
records += 1
logging.info('{} records in {}'.format(records, filename))
return records
def extract_records(input_file, output_file, num_records):
records = 0
all_records = []
with open(input_file, 'r', encoding='utf-8') as fin:
record = []
for line in fin:
line = line.strip()
if 'docstart' in line.lower():
continue
if line == '' and len(record) > 0:
all_records.append(record)
record = []
elif line != '':
record.append(line)
all_records.append(record)
selected_records = all_records[0:num_records]
with open(output_file, 'w', encoding='utf-8') as fout:
for i, record in enumerate(selected_records):
for r in record:
fout.write(r + '\n')
fout.write('\n')
def create_train_dev_test_from_one_file(conll_file, lang, output_dir):
records = 0
all_records = []
with open(conll_file, 'r', encoding='utf-8') as fin:
record = []
for line in fin:
line = line.strip()
if 'docstart' in line.lower():
continue
if line == '' and len(record) > 0:
all_records.append(record)
record = []
elif line != '':
fields = line.split()
if len(fields) > 1:
line = fields[0] + '\t' + fields[-1]
record.append(line)
if len(record) > 0:
all_records.append(record)
logging.info('{} sentences for {} detected.'.format(len(all_records), lang))
train_100 = all_records[0:100]
train_1000 = all_records[0:1000]
train_10000 = all_records[0:10000]
test_count = dev_count = min(len(all_records) - 10000 // 2, 10000)
dev = all_records[10000:10000 + dev_count]
test = all_records[10000 + dev_count: 10000 + dev_count + test_count]
train_100_file = os.path.join(output_dir, '{}.train.{}'.format(lang, 100))
train_1000_file = os.path.join(output_dir, '{}.train.{}'.format(lang, 1000))
train_10000_file = os.path.join(output_dir, '{}.train.{}'.format(lang, 10000))
dev_file = os.path.join(output_dir, '{}.dev'.format(lang))
test_file = os.path.join(output_dir, '{}.test'.format(lang))
file_records = [(train_100, train_100_file), (train_1000, train_1000_file), (train_10000, train_10000_file), (dev, dev_file), (test, test_file)]
for file_record in file_records:
with open(file_record[1], 'w', encoding='utf-8') as fout:
for i, record in enumerate(file_record[0]):
for r in record:
fout.write(r + '\n')
fout.write('\n')
logging.info('created train dev test splits for {} in {}'.format(lang, output_dir))
def add_lang_to_each_word(dir_name, name_index, lang_separator=':', embfile=None):
if embfile:
files = [embfile]
else:
files = [f for f in os.listdir(dir_name) if os.path.isfile(os.path.join(dir_name, f))]
for file in files:
if not embfile:
if file[-5:] == 'multi' or 'cca-59' in str(file):
continue
lang = file.split('.')[name_index]
print('lang:{}'.format(lang))
filename = os.path.join(dir_name, file)
lines = []
with open(filename, 'r', encoding='utf-8') as fin:
for line in fin:
if line.strip() != '':
line = lang + lang_separator + line
lines.append(line)
with open(filename + '.multi', 'w', encoding='utf-8') as fout:
for line in lines:
fout.write(line)
def create_ner_training_datasets():
for lang in ['de', 'en', 'nl']:
for i in [100, 1000, 10000]:
extract_records(input_file='./datasets/ner/{}.train'.format(lang), output_file='./datasets/ner/{}.train.{}'.format(lang, i), num_records=i)
check_num_records('./datasets/ner/{}.train.{}'.format(lang, i))
def collect_vocab_and_tags(dir_name, fname=None):
'''
:param dir_name:
:return set of all the vocab (+$UNK$ and +$NUM$ in all the files in the directory (expect all the files to be in conll2003 format):
'''
tags = set()
vocab = set()
chars = set()
files = [f for f in os.listdir(dir_name) if os.path.isfile(os.path.join(dir_name, f))] if not fname else [os.path.join(dir_name, fname)]
for file in files:
#we just want the files where language id is added to the beginning of the words
if file[-5:] != 'multi':
continue
filename = os.path.join(dir_name, file)
with open(filename, 'r', encoding='utf-8') as fin:
for line in fin:
if line.strip() != '' and 'docstart' not in line.lower():
fields = line.split()
if len(fields) > 1:
word, tag = fields[0], fields[-1]
else:
logging.info('warning: error in line {} in file {}'.format(line, filename))
vocab.add(word.lower())
tags.add(tag)
chars.update(word)
return vocab, tags, chars
def collect_vocab_and_tags_panx(panx_dir_name, fname=None):
'''
:param dir_name: contains tar.gz files each with train test dev conll files
:return set of all the vocab (+$UNK$ and +$NUM$ in all the files in the directory (expect all the files to be in conll2003 format):
important note: all vocab in wikiembs :https://fasttext.cc/docs/en/pretrained-vectors.html are lowercase while
words in wikiemb+crawlemb: https://fasttext.cc/docs/en/crawl-vectors.html have upper case words so it will make a huge
difference in terms of OOVs and how we match words in NER datasets to words in the pre-trained word embeddings.
'''
tags = set()
vocab = set()
chars = set()
files = [f for f in os.listdir(panx_dir_name) if os.path.isfile(os.path.join(panx_dir_name, f))] if not fname else [fname]
for file in files:
targz_file = os.path.join(panx_dir_name, file)
tar = tarfile.open(targz_file, "r:gz")
for member in tar.getmembers():
#don't collect the vocabulary of extra annotated data
if member.name == 'extra':
continue
bio_file = tar.extractfile(member)
for line in bio_file:
line = line.decode('utf-8')
if line.strip() != '' and 'docstart' not in line.lower():
fields = line.split()
if len(fields) > 1:
word, tag = fields[0], fields[-1]
else:
logging.info('warning: error in line {} in file {}'.format(line, targz_file))
vocab.add(word)
tags.add(tag)
chars.update(word)
tar.close()
return vocab, tags, chars
def collect_embedding_vocabs(dir_name, embfile=None):
'''
:param dir_name: directory where all the word embeddings with different languages are located
expected that lang id- (e.g. en-) is added to the beginning of each word so that exact words in different
languages are distinguishable
:return: set of vocab
'''
vocab_emb = set()
filename = os.path.join(dir_name, emb_file)
with gzip.open(filename, 'rt', encoding='utf-8') if 'gz' in embfile else open(filename, 'r', encoding='utf-8') as fin:
for line in fin:
if line.strip() != '':
word = line.split(' ')[0]
vocab_emb.add(word)
vocab_lang_distribution = [v.split(':')[0] for v in vocab_emb]
vocab_lang_distribution = Counter(vocab_lang_distribution)
logging.info('embedding file vocab stats: {}'.format(str(vocab_lang_distribution)))
return vocab_emb
def write_list(items, output_file):
with open(output_file, 'w', encoding='utf-8') as fout:
for i, item in enumerate(sorted(items)):
if i != len(items) - 1:
fout.write('{}\n'.format(item))
else:
fout.write(item)
def read_list(filename):
items = []
with open(filename, 'r', encoding='utf-8') as fin:
for item in fin:
items.append(item.strip())
return items
def write_vocab_tags_chars_embs(vocab_ner, tags, chars, vocab_emb, output_dir):
write_list(tags, os.path.join(output_dir, 'tags.txt'))
write_list(chars, os.path.join(output_dir, 'chars.txt'))
'''
now we should add any vocab that might have uppercase in vocab_ner
but is lowercase in vocab_emmb.
note that lowercase=True should be turned to lowercase=False in mconfig file to reflect this.
question: what about the cases when a lower case word is in NER but an uppercase is in emb?
'''
vocab = vocab_ner & vocab_emb
for v in vocab_ner:
vlow = v.lower()
if v == vlow:
continue
if v not in vocab_emb and vlow in vocab_emb:
vocab.add(vlow)
vocab_lang_distribution = [v.split(':')[0] for v in vocab]
vocab_lang_distribution = Counter(vocab_lang_distribution)
logging.info(vocab_lang_distribution)
with open(os.path.join(output_dir, 'stats'), 'w') as fout:
fout.write(str(vocab_lang_distribution))
vocab.add('$UNK$')
vocab.add('$NUM$')
write_list(vocab, os.path.join(output_dir, 'words.txt'))
def build_vocab(conll_dir, emb_dir, output_dir, emb_file=None, panx=False, fname=None):
if panx:
vocab, tags, chars = collect_vocab_and_tags_panx(conll_dir, fname=fname)
else:
vocab, tags, chars = collect_vocab_and_tags(conll_dir)
vocab_emb = collect_embedding_vocabs(emb_dir, emb_file)
write_vocab_tags_chars_embs(vocab, tags, chars, vocab_emb, output_dir)
return vocab, tags, chars
def trim_embs(emb_dir, vocab_file, output_dir, dim, emb_file=None):
vocab = read_list(vocab_file)
vocabset = set(vocab)
vocab_emb = set()
embeddings = np.zeros([len(vocab), dim])
filename = os.path.join(emb_dir, emb_file)
with gzip.open(filename, 'rt', encoding='utf-8') if 'gz' in emb_file else open(filename, 'r', encoding='utf-8') as fin:
for line in fin:
line = line.strip().split(' ')
word = line[0]
if word not in vocabset:
continue
embedding = [float(x) for x in line[1:]]
word_idx = vocab.index(word)
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(os.path.join(output_dir, 'trimmed_embs.npz'), embeddings=embeddings)
def data_to_byteio(records, name):
data = ''
for i, record in enumerate(records):
for r in record:
data += r + '\n'
data += '\n'
encoded_data = data.encode('utf8')
data_byteio = io.BytesIO(encoded_data)
tarinfo = tarfile.TarInfo(name)
tarinfo.size = len(encoded_data)
return data_byteio, tarinfo
def annotation_to_byteio(records, name):
data = ''
for i, record in enumerate(records):
data += '\n'.join([str(c) for c in record]) + '\n\n'
encoded_data = data.encode('utf8')
data_byteio = io.BytesIO(encoded_data)
tarinfo = tarfile.TarInfo(name)
tarinfo.size = len(encoded_data)
return data_byteio, tarinfo
def annotation_to_byteio_yuan(records, name):
data = ''
for i, record in enumerate(records):
data += '\t'.join([str(c) for c in record]) + '\n'
encoded_data = data.encode('utf8')
data_byteio = io.BytesIO(encoded_data)
tarinfo = tarfile.TarInfo(name)
tarinfo.size = len(encoded_data)
return data_byteio, tarinfo
def write_panx_preprocessed(filehandle, filename, output_dir):
langid = filename.split('.')[0]
records = 0
all_records = []
record = []
tag_records = defaultdict(set)
last_label_in_record = None
for line in filehandle:
line = line.decode('utf-8')
line = line.strip()
if 'docstart' in line.lower():
continue
if line == '' and len(record) > 0:
all_records.append(record)
if last_label_in_record:
tag_records[last_label_in_record].add(len(all_records) - 1)
last_label_in_record = None
record = []
elif line != '':
fields = line.split()
if len(fields) > 1:
line = langid + ':' + fields[0] + '\t' + fields[-1]
if 'B-' in fields[-1]:
last_label_in_record = fields[-1]
record.append(line)
if len(record) > 0:
all_records.append(record)
#find the minimum count of B- tag, used for stratified sampling
min_count_tag = min([len(v) for v in tag_records.values()])
#now sample min_count_tag records from each tag
new_records = []
for _, records in tag_records.items():
new_records.extend(random.sample(records, min_count_tag))
#new records contains indices of items in all_records
random.seed(0)
np.random.seed(0)
random.shuffle(new_records)
all_records = [all_records[i] for i in new_records]
total_records = len(all_records)
if total_records > 30000:
num_recs = 10000
elif total_records > 3000:
num_recs = 1000
elif total_records > 300:
num_recs = 100
else:
return
num_train = min((total_records - 2 * num_recs) - (total_records - 2 * num_recs) % 1000, 20000)
num_train = max((num_train // 5000) * 5000, num_recs)
train_set = all_records[0:num_train]
dev_set = all_records[num_train:num_train + num_recs]
test_set = all_records[num_train + num_recs:num_train + 2 * num_recs]
extra_set = all_records[num_train + 2 * num_recs:]
print(langid, 'train', num_train, 'dev/test', num_recs)
tar = tarfile.open(os.path.join(output_dir, filename), "w:gz")
train_data, train_tarinfo = data_to_byteio(train_set, 'train')
dev_data, dev_tarinfo = data_to_byteio(dev_set, 'dev')
test_data, test_tarinfo = data_to_byteio(test_set, 'test')
extra_data, extra_tarinfo = data_to_byteio(extra_set, 'extra')
tar.addfile(tarinfo=train_tarinfo, fileobj=train_data)
tar.addfile(tarinfo=dev_tarinfo, fileobj=dev_data)
tar.addfile(tarinfo=test_tarinfo, fileobj=test_data)
tar.addfile(tarinfo=extra_tarinfo, fileobj=extra_data)
tar.close()
def get_cca59_languages(cca_59_file):
lang_count = Counter()
with gzip.open(cca_59_file, 'rt', encoding='utf-8') if 'gz' in cca_59_file else io.open(cca_59_file, 'r', encoding='utf-8') as fin:
for line in fin:
lang = line.split(':')[0]
lang_count[lang] += 1
return lang_count
def panx_to_dataset(input_dir, output_dir, supported_langs=None, count=False):
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
if count:
file_record = {}
for file in files:
targz_file = os.path.join(input_dir, file)
tar = tarfile.open(targz_file, "r:gz")
for member in tar.getmembers():
if '.bio' in member.name:
bio_file = tar.extractfile(member)
if bio_file is not None:
num_records = check_num_records_by_content(bio_file, file)
file_record[file] = num_records
file_record = Counter(file_record)
print(file_record.most_common())
with open(os.path.join(output_dir, 'lang_stats.json'), 'w') as fout:
json.dump(file_record, fout)
for file in files:
langid = file.split('.')[0]
if supported_langs and langid not in supported_langs:
continue
targz_file_in = os.path.join(input_dir, file)
targz_file_out = os.path.join(output_dir, file)
tar = tarfile.open(targz_file_in, "r:gz")
for member in tar.getmembers():
if '.bio' in member.name:
bio_file = tar.extractfile(member)
if bio_file is not None:
write_panx_preprocessed(bio_file, file, output_dir)
tar.close()
def parse_args(argv):
"""
Parse commandline arguments.
Arguments:
argv -- An argument list without the program name.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--embs_dir', type=str, required=True, help='directory containing the complete word embeddings')
parser.add_argument('--ner_built_dir', type=str, required=True, help='directory where built output (trimmed embs + vocab) will be written into.')
args = parser.parse_args(argv)
return args
if __name__ == '__main__':
args = parse_args(sys.argv[1:])
logging.info(args)
#facebook or allenai multilingual embeddings?
embs_dir = args.embs_dir
ner_built_dir = args.ner_built_dir
#raw ner downloaded from panx
wiki_ner_input_dir = './datasets/panx2_all/'
#directory for converted raw ner data to train/test/dev stratified
wiki_ner_output_dir = './datasets/panx_datasets' #'./datasets/panx2_supported45'
wiki_embsupported_languages = ['af', 'ar', 'bg', 'bn', 'bs', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et',
'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'hu', 'id', 'it', 'lt', 'lv', 'mk', 'ms', 'nl',
'no', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq', 'sv', 'ta', 'tl',
'tr', 'uk', 'vi']
print(f"num langs: {len(wiki_embsupported_languages)}")
create_ner_datasets = False
if create_ner_datasets:
#only run this once to create stratified train/dev/test splits from wikiann, and save them.
panx_to_dataset(wiki_ner_input_dir, wiki_ner_output_dir, supported_langs=None)#wiki_embsupported_languages)
sys.exit(0)
all_chars = set()
if not os.path.exists(ner_built_dir):
os.mkdir(ner_built_dir)
for lang in wiki_embsupported_languages:
output_dir = os.path.join(ner_built_dir , f'builtdata_{lang}')
emb_file = lang + '.multi.gz'
#create_train_dev_test_from_one_file(conll_file='./datasets/originals/ner/de/wikiann-de.bio', lang='de', output_dir=ner_dir)
#create_train_dev_test_from_one_file(conll_file='./datasets/originals/ner/en/wikiann-en.bio', lang='en', output_dir=ner_dir)
#create_train_dev_test_from_one_file(conll_file='./datasets/originals/ner/nl/wikiann-nl.bio', lang='nl', output_dir=ner_dir)
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
print(f"directory exists:{output_dir}")
os.mkdir(output_dir)
#for panx langid is already added to conll terms
#add_lang_to_each_word(ner_dir, name_index=0, lang_separator=':')
#embeddings already have lang identifier
vocab, tags, chars = build_vocab(wiki_ner_output_dir, os.path.join(embs_dir, lang), output_dir, emb_file=emb_file, panx=True, fname='{}.tar.gz'.format(lang))
all_chars = all_chars | chars
trim_embs(os.path.join(embs_dir, lang), os.path.join(output_dir, 'words.txt'), output_dir, 300, emb_file=emb_file)
write_list(all_chars, os.path.join(ner_built_dir, 'chars.txt'))
write_list(tags, os.path.join(ner_built_dir, 'tags.txt'))