-
Notifications
You must be signed in to change notification settings - Fork 3
/
cadf.py
88 lines (70 loc) · 2.43 KB
/
cadf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/python
# -*- coding: utf-8 -*-
# cadf.py
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas as pd
import pprint
import statsmodels.tsa.stattools as ts
from pandas_datareader import data as web
from pandas.stats.api import ols
def plot_price_series(df, ts1, ts2):
months = mdates.MonthLocator() # every month
fig, ax = plt.subplots()
ax.plot(df.index, df[ts1], label=ts1)
ax.plot(df.index, df[ts2], label=ts2)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
ax.set_xlim(datetime.datetime(2012, 1, 1), datetime.datetime(2013, 1, 1))
ax.grid(True)
fig.autofmt_xdate()
plt.xlabel('Month/Year')
plt.ylabel('Price ($)')
plt.title('%s and %s Daily Prices' % (ts1, ts2))
plt.legend()
plt.show()
def plot_scatter_series(df, ts1, ts2):
plt.xlabel('%s Price ($)' % ts1)
plt.ylabel('%s Price ($)' % ts2)
plt.title('%s and %s Price Scatterplot' % (ts1, ts2))
plt.scatter(df[ts1], df[ts2])
plt.show()
def plot_residuals(df):
months = mdates.MonthLocator() # every month
fig, ax = plt.subplots()
ax.plot(df.index, df["res"], label="Residuals")
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
ax.set_xlim(datetime.datetime(2012, 1, 1), datetime.datetime(2013, 1, 1))
ax.grid(True)
fig.autofmt_xdate()
plt.xlabel('Month/Year')
plt.ylabel('Price ($)')
plt.title('Residual Plot')
plt.legend()
plt.plot(df["res"])
plt.show()
if __name__ == "__main__":
start = datetime.datetime(2012, 1, 1)
end = datetime.datetime(2013, 1, 1)
arex = web.DataReader("AREX", "yahoo", start, end)
wll = web.DataReader("WLL", "yahoo", start, end)
df = pd.DataFrame(index=arex.index)
df["AREX"] = arex["Adj Close"]
df["WLL"] = wll["Adj Close"]
# Plot the two time series
plot_price_series(df, "AREX", "WLL")
# Display a scatter plot of the two time series
plot_scatter_series(df, "AREX", "WLL")
# Calculate optimal hedge ratio "beta"
res = ols(y=df['WLL'], x=df["AREX"])
beta_hr = res.beta.x
# Calculate the residuals of the linear combination
df["res"] = df["WLL"] - beta_hr*df["AREX"]
# Plot the residuals
plot_residuals(df)
# Calculate and output the CADF test on the residuals
cadf = ts.adfuller(df["res"])
pprint.pprint(cadf)