-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
407 lines (328 loc) · 17.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
"""
Training script of DeVIS
Modified from DETR (https://github.com/facebookresearch/detr)
"""
import argparse
import datetime
import random
import warnings
from contextlib import redirect_stdout
import time
from pathlib import Path
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import src.util.misc as utils
from src.datasets import build_dataset
from src.engine import evaluate_coco, inference_vis, train_one_epoch
from src.models import build_model, build_tracker
from src.util.weights_loading_utils import shift_class_neurons, adapt_weights_devis, \
adapt_weights_mask_head
from src.util.visdom_vis import build_visualizers, get_vis_win_names
from src.config import get_cfg_defaults
def get_args_parser():
parser = argparse.ArgumentParser('DeVIS argument parser', add_help=False)
parser.add_argument('--config-file', help="Configuration file path")
parser.add_argument('--eval-only', action='store_true', help="Run test only")
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed '
'training')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
return parser
def sanity_check(cfg):
assert cfg.MODEL.LOSS.FOCAL_LOSS, "Softmax classification loss not implemented, " \
"see src/models/critertion.py loss_labels() "
assert cfg.MODEL.LOSS.FOCAL_LOSS
if cfg.MODEL.LOSS.MASK_AUX_LOSS:
assert min(cfg.MODEL.LOSS.MASK_AUX_LOSS) >= 0 and max(cfg.MODEL.LOSS.MASK_AUX_LOSS) <= 4, \
f"Available MODEL.LOSS.MASK_AUX_LOSS levels : [0, 1, 2, 3, 4]"
if cfg.MODEL.LOSS.AUX_LOSS_WEIGHTING:
assert cfg.MODEL.TRANSFORMER.DECODER_LAYERS == 6, "MODEL.LOSS.AUX_LOSS_WEIGHTING weights " \
"config available only for 6 layers "
if cfg.TEST.USE_TOP_K:
assert cfg.MODEL.LOSS.FOCAL_LOSS, "TopK can only be used with FOCAL_LOSS"
else:
if cfg.DATASETS.TYPE == 'vis':
if cfg.TEST.NUM_OUT != (cfg.MODEL.NUM_QUERIES // cfg.MODEL.DEVIS.NUM_FRAMES):
warnings.warn("TEST.NUM_OUT != to number of queries per frame for DeVIS, "
"automatically setting it")
else:
if cfg.TEST.NUM_OUT != cfg.MODEL.NUM_QUERIES:
warnings.warn("TEST.NUM_OUT != to number of queries, automatically setting it")
if cfg.DATASETS.TYPE == 'vis':
assert cfg.MODEL.DEVIS.NUM_FRAMES > 1, "MODEL.DEVIS.NUM_FRAMES must be higher than 1"
assert not (cfg.MODEL.NUM_QUERIES % cfg.MODEL.DEVIS.NUM_FRAMES), \
"MODEL.NUM_QUERIES must be divisible by MODEL.DEVIS.NUM_FRAMES for VIS training"
if cfg.SOLVER.DEVIS.FINETUNE_QUERY_EMBEDDINGS:
assert not (300 % (cfg.MODEL.NUM_QUERIES // cfg.MODEL.DEVIS.NUM_FRAMES)), \
"Number of queries per frame must be divisible by 300 for SOLVER.DEVIS.FINETUNE_QUERY_EMBEDDINGS"
assert cfg.SOLVER.BATCH_SIZE == 1, "Batch size > 1 not implemented for VIS training"
assert cfg.TEST.CLIP_TRACKING.STRIDE < cfg.MODEL.DEVIS.NUM_FRAMES, \
"Clip tracking stride can not be higher than the clip size"
if cfg.TEST.INPUT_FOLDER:
assert len(cfg.TEST.EPOCHS_TO_EVAL) >= 1, \
"TEST.EPOCHS_TO_EVAL must contain at least 1 epoch number"
assert not (cfg.MODEL.WITH_BBX_REFINE and cfg.MODEL.WITH_REF_POINT_REFINE), \
"MODEL.WITH_BBX_REFINE can not be activated together with cfg.MODEL.WITH_BBX_REFINE, select one of the two"
def main(args, cfg):
sanity_check(cfg)
utils.init_distributed_mode(args)
# print("git:\n {}\n".format(utils.get_sha()))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = cfg.SEED + utils.get_rank()
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:2'
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
g = torch.Generator()
g.manual_seed(seed)
train_dataset, num_classes = build_dataset(image_set="TRAIN", cfg=cfg)
dataset_val, _ = build_dataset(image_set="VAL", cfg=cfg)
model, criterion, postprocessors = build_model(num_classes, device, cfg)
model.to(device)
visualizers = {}
if cfg.DATASETS.TYPE != 'vis' or not args.eval_only:
visualizers = build_visualizers(cfg)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
tracker = None
if cfg.DATASETS.TYPE == 'vis':
tracker = build_tracker(model, cfg)
n_total_params = sum(p.numel() for p in model.parameters())
print(f'Total num params: {n_total_params}')
if args.distributed:
sampler_train = DistributedSampler(train_dataset)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(train_dataset)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, cfg.SOLVER.BATCH_SIZE, drop_last=True)
data_loader_train = DataLoader(train_dataset, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=cfg.NUM_WORKERS,
worker_init_fn=utils.seed_worker, generator=g)
data_loader_val = DataLoader(dataset_val, cfg.SOLVER.BATCH_SIZE, sampler=sampler_val,
collate_fn=utils.val_collate if cfg.DATASETS.TYPE == 'vis' else utils.collate_fn,
num_workers=cfg.NUM_WORKERS
)
output_dir = Path(cfg.OUTPUT_DIR)
if args.eval_only:
if cfg.DATASETS.TYPE == 'vis':
# Used for visualization purposes only
selected_videos = ''
if cfg.TEST.VIZ.VIDEO_NAMES:
selected_videos = cfg.TEST.VIZ.VIDEO_NAMES.split(",")
# Allow all checkpoints input_folder test
if cfg.TEST.INPUT_FOLDER:
for epoch_to_eval in cfg.TEST.EPOCHS_TO_EVAL:
print(f"************* Starting validation epoch {epoch_to_eval} *************")
checkpoint_path = os.path.join(cfg.TEST.INPUT_FOLDER,
f"checkpoint_epoch_{epoch_to_eval}.pth")
assert os.path.exists(
checkpoint_path), f"Checkpoint path {checkpoint_path} DOESN'T EXIST"
out_folder_name = f"val_epoch_{epoch_to_eval}"
resume_state_dict = torch.load(checkpoint_path, map_location=device)['model']
model_without_ddp.load_state_dict(resume_state_dict, strict=True)
_ = inference_vis(
tracker, data_loader_val, dataset_val, visualizers, device,
output_dir, out_folder_name, epoch_to_eval, selected_videos)
else:
out_folder_name = cfg.TEST.SAVE_PATH
resume_state_dict = torch.load(cfg.MODEL.WEIGHTS, map_location=device)['model']
model_without_ddp.load_state_dict(resume_state_dict, strict=True)
_ = inference_vis(
tracker, data_loader_val, dataset_val, visualizers, device, output_dir,
out_folder_name, 0, selected_videos)
else:
checkpoint = torch.load(cfg.MODEL.WEIGHTS, map_location=device)['model']
if cfg.MODEL.SHIFT_CLASS_NEURON:
checkpoint = shift_class_neurons(checkpoint)
if cfg.MODEL.MASK_ON:
checkpoint = adapt_weights_mask_head(checkpoint, model_without_ddp.state_dict())
model_without_ddp.load_state_dict(checkpoint, strict=True)
_, coco_evaluator = evaluate_coco(
model, criterion, postprocessors, data_loader_val, device, output_dir,
visualizers['val'], cfg.VISDOM_AND_LOG_INTERVAL, cfg.START_EPOCH
)
if cfg.OUTPUT_DIR:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
if cfg.SOLVER.FROZEN_PARAMS:
for n, p in model_without_ddp.named_parameters():
if utils.match_name_keywords(n, cfg.SOLVER.FROZEN_PARAMS):
p.requires_grad_(False)
n_train_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
utils.print_training_params(model_without_ddp, cfg)
print(f'Number of training params: {n_train_params}')
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not utils.match_name_keywords(n, cfg.SOLVER.BACKBONE_NAMES +
cfg.SOLVER.LR_LINEAR_PROJ_NAMES +
cfg.SOLVER.LR_MASK_HEAD_NAMES +
cfg.SOLVER.DEVIS.LR_TEMPORAL_LINEAR_PROJ_NAMES)
and p.requires_grad],
"lr": cfg.SOLVER.BASE_LR,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
utils.match_name_keywords(n, cfg.SOLVER.BACKBONE_NAMES) and p.requires_grad],
"lr": cfg.SOLVER.LR_BACKBONE,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
utils.match_name_keywords(n,
cfg.SOLVER.LR_LINEAR_PROJ_NAMES) and p.requires_grad],
"lr": cfg.SOLVER.BASE_LR * cfg.SOLVER.LR_LINEAR_PROJ_MULT,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
utils.match_name_keywords(n,
cfg.SOLVER.LR_MASK_HEAD_NAMES) and p.requires_grad],
"lr": cfg.SOLVER.BASE_LR * cfg.SOLVER.LR_MASK_HEAD_MULT,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
utils.match_name_keywords(n,
cfg.SOLVER.DEVIS.LR_TEMPORAL_LINEAR_PROJ_NAMES) and p.requires_grad],
"lr": cfg.SOLVER.BASE_LR * cfg.SOLVER.DEVIS.LR_TEMPORAL_LINEAR_PROJ_MULT,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.SOLVER.BASE_LR,
weight_decay=cfg.SOLVER.WEIGHT_DECAY)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, cfg.SOLVER.STEPS)
best_val_stats = None
start_epoch = cfg.START_EPOCH
if cfg.MODEL.WEIGHTS:
if cfg.MODEL.WEIGHTS.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
cfg.MODEL.WEIGHTS, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(cfg.MODEL.WEIGHTS, map_location='cpu')
checkpoint_state_dict = checkpoint['model']
model_state_dict = model_without_ddp.state_dict()
# We assume that when resuming training no changes need to be made on the weights
if not cfg.SOLVER.RESUME_OPTIMIZER:
if cfg.DATASETS.TYPE == 'vis':
checkpoint_state_dict = adapt_weights_devis(checkpoint_state_dict, model_state_dict,
cfg.MODEL.NUM_FEATURE_LEVELS,
cfg.MODEL.LOSS.FOCAL_LOSS,
cfg.SOLVER.DEVIS.FINETUNE_CLASS_LOGITS,
cfg.MODEL.DEVIS.NUM_FRAMES,
cfg.SOLVER.DEVIS.FINETUNE_QUERY_EMBEDDINGS,
cfg.SOLVER.DEVIS.FINETUNE_TEMPORAL_MODULES,
cfg.MODEL.DEVIS.DEFORMABLE_ATTENTION.ENC_CONNECT_ALL_FRAMES,
cfg.MODEL.DEVIS.DEFORMABLE_ATTENTION.ENC_TEMPORAL_WINDOW,
cfg.MODEL.DEVIS.DEFORMABLE_ATTENTION.ENC_N_POINTS_TEMPORAL_FRAME,
cfg.MODEL.DEVIS.DEFORMABLE_ATTENTION.DEC_N_POINTS_TEMPORAL_FRAME
)
else:
if cfg.MODEL.SHIFT_CLASS_NEURON:
checkpoint_state_dict = shift_class_neurons(checkpoint_state_dict)
if cfg.MODEL.MASK_ON:
checkpoint_state_dict = adapt_weights_mask_head(checkpoint_state_dict,
model_state_dict)
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint_state_dict,
strict=False)
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
# RESUME OPTIM
if not args.eval_only and cfg.SOLVER.RESUME_OPTIMIZER:
if 'optimizer' in checkpoint:
for c_p, p in zip(checkpoint['optimizer']['param_groups'], param_dicts):
c_p['lr'] = p['lr']
optimizer.load_state_dict(checkpoint['optimizer'])
if 'lr_scheduler' in checkpoint:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if 'epoch' in checkpoint:
start_epoch = checkpoint['epoch'] + 1
if 'best_val_stats' in checkpoint:
best_val_stats = checkpoint['best_val_stats']
if not args.eval_only and cfg.RESUME_VIS and 'vis_win_names' in checkpoint:
for k, v in visualizers.items():
for k_inner in v.keys():
visualizers[k][k_inner].win = checkpoint['vis_win_names'][k][k_inner]
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, cfg.SOLVER.EPOCHS + 1):
if args.distributed:
sampler_train.set_epoch(epoch)
train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, visualizers['train'],
cfg.VISDOM_AND_LOG_INTERVAL, cfg.SOLVER.GRAD_CLIP_MAX_NORM
)
lr_scheduler.step()
checkpoint_paths = [output_dir / 'checkpoint.pth']
if cfg.SOLVER.CHECKPOINT_INTERVAL and not epoch % int(cfg.SOLVER.CHECKPOINT_INTERVAL):
checkpoint_paths.append(output_dir / f"checkpoint_epoch_{epoch}.pth")
# # VAL
if (epoch == 1 or not epoch % cfg.TEST.EVAL_PERIOD) and epoch >= cfg.TEST.START_EVAL_EPOCH:
if cfg.DATASETS.TYPE == 'vis':
out_folder_name = os.path.join(cfg.TEST.SAVE_PATH, f"epoch_{epoch}")
_ = inference_vis(
tracker, data_loader_val, dataset_val, visualizers['val'], device, output_dir,
out_folder_name, epoch, '')
# TODO: If val_dataset has_gt save additionally best epoch
else:
val_stats, _ = evaluate_coco(
model, criterion, postprocessors, data_loader_val, device,
output_dir, visualizers['val'], cfg.VISDOM_AND_LOG_INTERVAL, epoch)
stat_names = ['BBOX_AP_IoU_0_50-0_95', ]
if cfg.MODEL.MASK_ON:
stat_names.extend(['MASK_AP_IoU_0_50-0_95', ])
if best_val_stats is None:
best_val_stats = val_stats
best_val_stats = [best_stat if best_stat > stat else stat
for best_stat, stat in zip(best_val_stats, val_stats)]
for b_s, s, n in zip(best_val_stats, val_stats, stat_names):
if b_s == s:
checkpoint_paths.append(output_dir / f"checkpoint_best_{n}.pth")
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'cfg': cfg,
'vis_win_names': get_vis_win_names(visualizers),
'best_val_stats': best_val_stats
}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeVIS training and evaluation script',
parents=[get_args_parser()])
args_ = parser.parse_args()
cfg_ = get_cfg_defaults()
cfg_.merge_from_file(args_.config_file)
cfg_.merge_from_list(args_.opts)
cfg_.freeze()
if cfg_.OUTPUT_DIR:
Path(cfg_.OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
with open(os.path.join(cfg_.OUTPUT_DIR, 'config.yaml'), 'w') as yaml_file:
with redirect_stdout(yaml_file):
print(cfg_.dump())
main(args_, cfg_)