scitype(object)
, coerce(vector, SomeSciType)
,
levels(categorical_vector)
, levels!(categorical_vector)
,
schema(table)
, MLJ.table(matrix)
, autotype(table)
,
coerce(table, ...)
, coerce!(dataframe, ...)
, elscitype(vector)
OpenML.load(id)
, unpack(table, ...)
, models()
, models(filter)
,
models(string)
, @load ModelType pkg=PackageName
, info(model)
,
machine(model, X, y)
, partition(row_indices, ...)
, fit!(mach, rows=...)
, predict(mach, rows=...)
, predict(mach, Xnew)
,
fitted_params(mach)
, report(mach)
, MLJ.save
,
machine(filename)
, machine(filename, X, y)
,
pdf(single_prediction, class)
, predict_mode(mach, Xnew)
,
predict_mean(mach, Xnew)
, predict_median(mach, Xnew)
,
measures()
, evaluate!
, range(model, :(param.nested_param), ...)
,
learning_curve(mach, ...)
Standardizer
, transform
, inverse_transform
, ContinuousEncoder
, @pipeline
iterator(r, resolution)
, sampler(r, distribution)
, RandomSearch
,
TunedModel
source(data)
, source()
, Probabilistic()
, Deterministic()
,
Unsupervised()
, @from_network