|
2 | 2 | #+subtitle: Version 0.5.0
|
3 | 3 | #+author: Zilong Li
|
4 | 4 |
|
5 |
| -#+options: toc:2 num:nil email:t -:nil ^:nil |
| 5 | +#+options: toc:2 num:t email:t -:nil ^:nil |
6 | 6 | #+latex_compiler: xelatex
|
7 | 7 | #+latex_class: article
|
8 | 8 | #+latex_class_options: [a4paper, 11pt]
|
|
13 | 13 | #+latex_header: \hypersetup{colorlinks=true, linkcolor=blue}
|
14 | 14 | #+latex: \clearpage
|
15 | 15 |
|
16 |
| -[[https://github.com/Zilong-Li/PCAone/actions/workflows/linux.yml/badge.svg]] |
17 |
| -[[https://github.com/Zilong-Li/PCAone/actions/workflows/mac.yml/badge.svg]] |
18 |
| -[[https://bioconda.github.io/recipes/pcaone/README.html][https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat]] |
19 |
| -[[https://github.com/Zilong-Li/PCAone/releases/latest][https://img.shields.io/github/v/release/Zilong-Li/PCAone.svg]] |
20 |
| -[[https://anaconda.org/bioconda/pcaone/badges/downloads.svg]] |
| 16 | +# [[https://github.com/Zilong-Li/PCAone/actions/workflows/linux.yml/badge.svg]] |
| 17 | +# [[https://github.com/Zilong-Li/PCAone/actions/workflows/mac.yml/badge.svg]] |
| 18 | +# [[https://bioconda.github.io/recipes/pcaone/README.html][https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat]] |
| 19 | +# [[https://github.com/Zilong-Li/PCAone/releases/latest][https://img.shields.io/github/v/release/Zilong-Li/PCAone.svg]] |
| 20 | +# [[https://anaconda.org/bioconda/pcaone/badges/downloads.svg]] |
21 | 21 |
|
22 | 22 | * Introduction
|
23 | 23 |
|
@@ -90,7 +90,7 @@ See [[file:CHANGELOG.org][change log]] here.
|
90 | 90 |
|
91 | 91 | - If using the PCAngsd algorithm, please also cite [[https://www.genetics.org/content/210/2/719][Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data]].
|
92 | 92 |
|
93 |
| -- If using the ancestry ajusted LD statistics for pruning and clumping, please also cite [[https://doi.org/10.1101/2024.05.02.592187][Measuring linkage disequilibrium and improvement of pruning and clumping in structured populations]]. |
| 93 | +- If using the ancestry ajusted LD statistics for pruning and clumping, please also cite [[doi:10.1093/genetics/iyaf009][Measuring linkage disequilibrium and improvement of pruning and clumping in structured populations]]. |
94 | 94 |
|
95 | 95 | * Quick start
|
96 | 96 |
|
@@ -278,14 +278,14 @@ This depends on your datasets, particularlly the relationship between number
|
278 | 278 | of samples (=N=) and the number of variants / features (=M=) and the top PCs
|
279 | 279 | (=k=). Here is an overview and the recommendation.
|
280 | 280 |
|
281 |
| -|--------------------------+-----------+--------------------------------------| |
282 |
| -| Method | Accuracy | Scenario | |
283 |
| -|--------------------------+-----------+--------------------------------------| |
284 |
| -| Full SVD (-d 3) | Exact | full variance explained | |
285 |
| -| Window-based RSVD (-d 2) | Very high | large scale data with =M > 1,000,000= | |
286 |
| -| IRAM (-d 0) | Very high | large scale data with =N < 5000= | |
287 |
| -| RSVD (-d 1) | High | accuracy insensitive, any scale data | |
288 |
| -|--------------------------+-----------+--------------------------------------| |
| 281 | +|-----------------+-------------------------+-----------+--------------------------------| |
| 282 | +| Method | Scenario | Accuracy | Speed | |
| 283 | +|-----------------+-------------------------+-----------+--------------------------------| |
| 284 | +| Full SVD (-d 3) | full variance explained | Exact | slow for big =N= and =M= | |
| 285 | +| winSVD (-d 2) | data with =M >> N= | Very high | fast (only 7 iterations used) | |
| 286 | +| IRAM (-d 0) | data with =N < 5000= | Very high | denpends on =N= and # iterations | |
| 287 | +| sSVD (-d 1) | accuracy insensitive | High | depends on # iterations | |
| 288 | +|-----------------+-------------------------+-----------+--------------------------------| |
289 | 289 |
|
290 | 290 | ** Input formats
|
291 | 291 |
|
|
0 commit comments