forked from SensorsINI/CartPoleSimulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_data_generator.py
288 lines (218 loc) · 11.8 KB
/
run_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import timeit
from time import sleep
import numpy as np
from CartPole import CartPole
from CartPole.cartpole_model import TrackHalfLength, create_cartpole_state, L
from CartPole.state_utilities import (ANGLE_COS_IDX, ANGLE_IDX, ANGLE_SIN_IDX,
ANGLED_IDX, POSITION_IDX, POSITIOND_IDX)
from others.globals_and_utils import create_rng, load_config
from others.p_globals import TrackHalfLength
# Uncomment if you want to get interactive plots for MPPI in Pycharm on MacOS
# On other OS you have to chose a different interactive backend.
# from matplotlib import use
# # use('TkAgg')
# use('macOSX')
class random_experiment_setter:
def __init__(self):
config = load_config("config_data_gen.yml")
self.length_of_experiment = config["length_of_experiment"]
self.controller = config["controller"]
self.position_init = config["random_initial_state"]["position"]
self.positionD_init = config["random_initial_state"]["positionD"]
self.angle_init = config["random_initial_state"]["angle"]
self.angleD_init = config["random_initial_state"]["angleD"]
self.target_position_init = config["random_initial_state"]["target_position"]
self.position_init_limits = config["random_initial_state"]["init_limits"]["position"]
self.positionD_init_limits = config["random_initial_state"]["init_limits"]["positionD"]
self.angle_init_limits = config["random_initial_state"]["init_limits"]["angle"]
self.angleD_init_limits = config["random_initial_state"]["init_limits"]["angleD"]
self.init_limits = [self.position_init_limits, self.positionD_init_limits, self.angle_init_limits, self.angleD_init_limits]
self.start_at_target = config["start_at_target"]
self.track_fraction_usable_for_target_position = config["track_fraction_usable_for_target_position"]
self.target_position_end = config["target_position_end"]
self.dt_simulation = config["dt"]["simulation"]
self.dt_controller_update = config["dt"]["control"]
self.dt_save = config["dt"]["saving"]
self.track_relative_complexity = config["turning_points"]["track_relative_complexity"]
self.interpolation_type = config["turning_points"]["interpolation_type"]
self.turning_points = config["turning_points"]["turning_points"]
self.turning_points_period = config["turning_points"]["turning_points_period"]
if isinstance(self.turning_points_period, str) and self.turning_points_period == 'inf':
self.turning_points_period = np.inf
self.change_target_equilibrium_every_x_second = config['change_target_equilibrium_every_x_second']
if isinstance(self.change_target_equilibrium_every_x_second, str) and self.change_target_equilibrium_every_x_second == 'inf':
self.change_target_equilibrium_every_x_second = np.inf
self.initial_target_equilibrium = config['initial_target_equilibrium']
self.L_initial_mode = config['L']['L_initial']
self.L_initial = None
self.change_L_every_x_second = config['L']['change_L_every_x_second']
if isinstance(self.change_L_every_x_second, str) and self.change_L_every_x_second == 'inf':
self.change_L_every_x_second = np.inf
self.L_discount_factor = config['L']['L_discount_factor']
self.L_range = config['L']['L_range']
self.L_informed_controller = config['L']['informed_controller']
self.L_change_mode = config['L']['L_change_mode']
self.L_step = config['L']['L_step']
self.rng = create_rng(self.__class__.__name__, config["seed"])
def set(self, CartPoleInstance: CartPole):
# set initial_state
initial_state_stub = create_cartpole_state()
initial_state_stub[POSITION_IDX] = self.position_init
initial_state_stub[POSITIOND_IDX] = self.positionD_init
initial_state_stub[ANGLE_IDX] = self.angle_init
initial_state_stub[ANGLED_IDX] = self.angleD_init
initial_state = generate_random_initial_state(initial_state_stub, init_limits=self.init_limits, rng=self.rng)
if self.start_at_target:
start_random_target_position_at = initial_state[POSITION_IDX]
else:
if self.target_position_init is None:
start_random_target_position_at = self.track_fraction_usable_for_target_position * \
TrackHalfLength * self.rng.uniform(-1.0, 1.0)
else:
start_random_target_position_at = self.target_position_init
if self.target_position_end is None:
end_random_target_position_at =\
self.track_fraction_usable_for_target_position * TrackHalfLength * self.rng.uniform(-1.0, 1.0)
else:
end_random_target_position_at = self.target_position_end
if self.initial_target_equilibrium == 'up' or self.initial_target_equilibrium == 1:
target_equilibrium = 1
elif self.initial_target_equilibrium == 'down' or self.initial_target_equilibrium == -1:
target_equilibrium = -1
elif self.initial_target_equilibrium == 'random':
target_equilibrium = int(2*np.random.binomial(1, 0.5)-1)
else:
Exception('{} is not a valid specification for target equilibrium'.format(self.initial_target_equilibrium))
global L
if self.L_initial_mode == 'uniform':
self.L_initial = np.random.uniform(*self.L_range)
elif self.L_initial_mode == 'default':
self.L_initial = L[...]
else:
self.L_initial = self.L_initial_mode
CartPoleInstance.setup_cartpole_random_experiment(
# Initial state
s0=initial_state,
# controller to be used in performed experiment
controller=self.controller,
# Timescales
dt_simulation=self.dt_simulation,
dt_controller=self.dt_controller_update,
dt_save=self.dt_save,
# Settings related to random trace generation
track_relative_complexity=self.track_relative_complexity,
length_of_experiment=self.length_of_experiment,
interpolation_type=self.interpolation_type,
turning_points_period=self.turning_points_period,
start_random_target_position_at=start_random_target_position_at,
end_random_target_position_at=end_random_target_position_at,
turning_points=self.turning_points,
used_track_fraction=self.track_fraction_usable_for_target_position,
target_equilibrium=target_equilibrium,
change_target_equilibrium_every_x_second=self.change_target_equilibrium_every_x_second,
L_initial=self.L_initial,
change_L_every_x_seconds=self.change_L_every_x_second,
L_discount_factor=self.L_discount_factor,
L_range=self.L_range,
L_informed_controller=self.L_informed_controller,
L_change_mode=self.L_change_mode,
L_step=self.L_step,
)
return CartPoleInstance # ready to run a random experiment
def generate_random_initial_state(init_state_stub, init_limits, rng):
position_init_limits, positionD_init_limits, angle_init_limits, angleD_init_limits = init_limits
initial_state_post = create_cartpole_state()
if np.isnan(init_state_stub[POSITION_IDX]):
initial_state_post[POSITION_IDX] = rng.uniform(
low=-1.0, high=1.0) * TrackHalfLength * position_init_limits
else:
initial_state_post[POSITION_IDX] = init_state_stub[POSITION_IDX]
if np.isnan(init_state_stub[POSITIOND_IDX]):
initial_state_post[POSITIOND_IDX] = rng.uniform(low=-1.0, high=1.0) * TrackHalfLength * positionD_init_limits
else:
initial_state_post[POSITIOND_IDX] = init_state_stub[POSITIOND_IDX]
if np.isnan(init_state_stub[ANGLE_IDX]):
if rng.uniform() > 0.5:
initial_state_post[ANGLE_IDX] = rng.uniform(low=angle_init_limits[0], high=angle_init_limits[1]) * (np.pi / 180.0)
else:
initial_state_post[ANGLE_IDX] = rng.uniform(low=-angle_init_limits[1], high=-angle_init_limits[0]) * (np.pi / 180.0)
else:
initial_state_post[ANGLE_IDX] = init_state_stub[ANGLE_IDX]
if np.isnan(init_state_stub[ANGLED_IDX]):
initial_state_post[ANGLED_IDX] = rng.uniform(low=-1.0, high=1.0) * angleD_init_limits * (np.pi / 180.0)
else:
initial_state_post[ANGLED_IDX] = init_state_stub[ANGLED_IDX]
# Add cos/sin values to state
initial_state_post[ANGLE_COS_IDX] = np.cos(initial_state_post[ANGLE_IDX])
initial_state_post[ANGLE_SIN_IDX] = np.sin(initial_state_post[ANGLE_IDX])
return initial_state_post
def run_data_generator(run_for_ML_Pipeline=False, record_path=None):
config = load_config("config_data_gen.yml")
if record_path is None:
record_path = config["PATH_TO_EXPERIMENT_RECORDINGS_DEFAULT"]
csv = record_path + '/Experiment'
number_of_experiments = config["number_of_experiments"]
frac_train = config["split"][0]
frac_val = config["split"][1]
save_mode = config["save_mode"]
show_summary_plots = config["show_summary_plots"]
show_controller_report = config["show_controller_report"]
if save_mode == 'online':
if show_summary_plots is True or show_controller_report is True:
raise PermissionError("You cannot plot summary if save_mode is online")
RES = random_experiment_setter()
############ END OF PARAMETERS SECTION ############
for i in range(number_of_experiments):
if run_for_ML_Pipeline:
if i < int(frac_train*number_of_experiments):
csv = record_path + "/Train"
elif i < int((frac_train+frac_val)*number_of_experiments):
csv = record_path + "/Validate"
else:
csv = record_path + "/Test"
try:
os.makedirs(csv)
except:
pass
csv += "/Experiment"
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# You may also specify some of the variables from above here, to make them change at each iteration.#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
print('{}/{}'.format(i+1, number_of_experiments))
sleep(0.1)
CartPoleInstance = CartPole()
CartPoleInstance = RES.set(CartPoleInstance)
gen_start = timeit.default_timer()
############ Profiling ############
# Uncommenting this block will save a file profiling_stats.txt in top-level directory
# Visualize bottlenecks and code runtime using
# snakeviz profiling_stats.txt
# with cProfile.Profile() as pr:
# CartPoleInstance.run_cartpole_random_experiment(
# csv=csv,
# save_mode=save_mode
# )
# with open('profiling_stats.txt', 'w', newline='') as stream:
# stats = Stats(pr, stream=stream)
# stats.strip_dirs()
# stats.sort_stats('time')
# stats.dump_stats('.prof_stats')
# stats.print_stats()
###################################
CartPoleInstance.run_cartpole_random_experiment(
csv=csv,
save_mode=save_mode,
show_summary_plots=show_summary_plots
)
gen_end = timeit.default_timer()
gen_dt = (gen_end - gen_start)
print('time to generate data: {} ms'.format(gen_dt * 1000.0))
print('Speed-up: {}'.format(float(config['length_of_experiment'])/gen_dt))
if show_controller_report:
try:
CartPoleInstance.controller.controller_report()
except:
pass
if __name__ == '__main__':
run_data_generator()