Skip to content

Commit 8f55178

Browse files
committed
Michaelmas notes
1 parent ff3dc9e commit 8f55178

35 files changed

+170
-220
lines changed

.gitignore

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,4 +14,7 @@ _bookdown_files
1414

1515
*/_main.tex
1616

17-
tikz*.pdf
17+
tikz*.pdf
18+
19+
.Renviron
20+
.Rprofile

Differential Equations/Introduction.tex

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ \subsection{Limits}\label{limits}}
4545

4646
\begin{itemize}
4747
\item
48-
Informally, if \(\lim_{x \to x_0} f(x) = A\), then \(f(Px)\) can be made arbitrarily close to \(A\) by making \(x\) sufficiently close to \(x_0\)
48+
Informally, if \(\lim_{x \to x_0} f(x) = A\), then \(f(x)\) can be made arbitrarily close to \(A\) by making \(x\) sufficiently close to \(x_0\)
4949

5050
\begin{itemize}
5151
\tightlist
@@ -60,7 +60,7 @@ \subsection{Limits}\label{limits}}
6060
\item
6161
for any \(\epsilon > 0\), there exists \(\delta >0\) such that \(|f(x) - A| < \epsilon\) for all \(0 < |x - x_0| < \delta\).
6262
\item
63-
Right hand limit, for example, defined similarly but with \(0 < |x - x_0| < \delta\) replaced with \(0 < x - x_0 < \delta\). A similar procedure can be done for left hand Limits
63+
Right hand limit, for example, defined similarly but with \(0 < |x - x_0| < \delta\) replaced with \(0 < x - x_0 < \delta\). A similar procedure can be done for left hand limits
6464
\end{itemize}
6565

6666
\begin{figure}[h!]
@@ -106,19 +106,15 @@ \subsubsection{Properties}\label{properties}}
106106
\subsubsection{Proof of uniqueness of limits}\label{proof-of-uniqueness-of-limits}}
107107

108108
Suppose that \(\lim_{x \to x_0} f(x) = A\) \textcolor{red}{and} \(\lim_{x \to x_0} f(x) = B\).
109-
110-
In terms of our epsilon-delta definition, this means that for any \(\epsilon > 0\)h there exists \(\delta_A > 0\) and \(\delta_B > 0\) such that
111-
109+
In terms of our epsilon-delta definition, this means that for any \(\epsilon > 0\) there exists \(\delta_A > 0\) and \(\delta_B > 0\) such that
112110
\begin{align*}
113111
&\text{for }0 < |x -x_0| < \delta_A,\ |f(x) - A| < \epsilon / 2 \text{, where } \epsilon / 2 \text{ is an arbitrary positive quantity.} \\
114112
\color{red}{and} \ &\text{for } 0 < |x -x_0| < \delta_A,\ |f(x) - B| < \epsilon / 2
115113
\end{align*}
116-
117114
Now let \(\delta = min(\delta_A, \delta_B)\) and consider \(0 < |x -x_0| < \delta\) - follows that
118115
\begin{align*}
119116
|A - B| &= |[A - f(x)] - [B - f(x)]| \\
120117
&\leq |A - f(x)| + |B - f(x)| \\
121118
&\leq \epsilon
122119
\end{align*}
123-
124120
Since this holds \textcolor{red}{for all} \(\epsilon > 0\), we must have \(A = B\).

Differential Equations/de.pdf

147 KB
Binary file not shown.

Differential Equations/de.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,9 +3,9 @@
33
\def\npart {IA}
44
\def\nterm {Michaelmas}
55
\def\nyear {2021}
6-
\def\nlecturer {A.\ Chailinor}
6+
\def\nlecturer {Prof. A. Chailinor}
77
\def\ncourse {Differential Equations}
8-
\def\nauthor{Author}
8+
99

1010
\input{../preamble-dynamic.tex}
1111

Groups/02-dihedral.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -312,7 +312,7 @@ \subsubsection{Small n}\label{small-n}}
312312
\end{lemma}
313313

314314
\begin{proof}
315-
If $x \in {1, \dots, n} \setminus \{ a_1, \dots, a_k \} \cup \{ b_1, \dots, b_k \}$, $(\sigma \circ \tau) (x) = \sigma \left( \tau(x) \right) = (\tau \circ \sigma)(x)$.
315+
If $x \in \{1, \dots, n\} \setminus \{ a_1, \dots, a_k \} \cup \{ b_1, \dots, b_k \}$, $(\sigma \circ \tau) (x) = \sigma \left( \tau(x) \right) = (\tau \circ \sigma)(x)$.
316316

317317
Suppose $1 \leq i \leq k - 1$
318318
\begin{align*}
@@ -378,7 +378,7 @@ \subsubsection{Small n}\label{small-n}}
378378
\sigma^j(a_1) &= \sigma^i(a_1),\ j > i \geq 1 \\
379379
\implies \sigma^{j - i}(a_1) &= a_1 \quad \text{\Lightning \ of minimality of j.}
380380
\end{align*}
381-
So $\{ a_1, \sigma(a_1), \sigma^2(a_1), \dots, \sigma^{j-1}(a_1) \}$ is a cycle in $\sigma$.\\
381+
So $\left( a_1, \sigma(a_1), \sigma^2(a_1), \dots, \sigma^{j-1}(a_1) \right)$ is a cycle in $\sigma$.\\
382382
If $\exists \; b \in X \setminus \{ a_1, \sigma(a_1), \sigma^2(a_1), \dots, \sigma^{j-1}(a_1) \}$.
383383
Consider $b, \sigma(b), \dots$\\
384384
Note $\left(b, \sigma(b), \sigma^2(b), \dots, \sigma^{j-1}(b) \right)$ is disjoint from $\left( a_1, \sigma(a_1), \sigma^2(a_1), \dots, \sigma^{j-1}(a_1) \right)$ because $\sigma$ is a bijection.\footnote{If $\sigma^i(b) = \sigma^j(a_1)$ then $b = \sigma^{j - i}(a_1)$ which contradicts $b \in X \setminus \{ a_1, \sigma(a_1), \sigma^2(a_1), \dots, \sigma^{j-1}(a_1) \}$.}\\
@@ -521,7 +521,7 @@ \subsubsection{Small n}\label{small-n}}
521521
The map
522522
\begin{align*}
523523
\operatorname{sgn} : (S_n, \circ) &\to \left( \{ \pm 1 \}, \times \right) \\
524-
\sigma *\mapsto \operatorname{sgn}(\sigma)
524+
\sigma &\mapsto \operatorname{sgn}(\sigma)
525525
\end{align*}
526526
is a well-defined non-trivial (doesn't just map to identity) homomorphism.
527527
\end{theorem}

Groups/03-cosets.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
99

1010
\begin{example} ~\vspace*{-1.5\baselineskip}
1111
\begin{align*}
12-
S_3 &= \{ e, \begin{pmatrix}1 & 2 & 3\end{pmatrix}, \begin{pmatrix}1 & 3 & 2\end{pmatrix}, \begin{pmatrix}1 & 2\end{pmatrix}, \begin{pmatrix}1 & 3\end{pmatrix}, \begin{pmatrix}2 & 3\end{pmatrix} \} \\
13-
H &= \{ \text{id}, \begin{pmatrix}1 & 2 & 3\end{pmatrix}, \begin{pmatrix}1 & 3 & 2\end{pmatrix} \} = A_3 \\
12+
S_3 &= \left\{ e, \begin{pmatrix}1 & 2 & 3\end{pmatrix}, \begin{pmatrix}1 & 3 & 2\end{pmatrix}, \begin{pmatrix}1 & 2\end{pmatrix}, \begin{pmatrix}1 & 3\end{pmatrix}, \begin{pmatrix}2 & 3\end{pmatrix} \right\} \\
13+
H &= \left\{ \text{id}, \begin{pmatrix}1 & 2 & 3\end{pmatrix}, \begin{pmatrix}1 & 3 & 2\end{pmatrix} \right\} = A_3 \\
1414
\begin{pmatrix}1 & 2\end{pmatrix}H &= \left\{ \begin{pmatrix}1 & 2\end{pmatrix}, \begin{pmatrix}1 & 2\end{pmatrix}\begin{pmatrix}1 & 2 & 3\end{pmatrix}, \begin{pmatrix}1 & 2\end{pmatrix}\begin{pmatrix}1 & 3 & 2\end{pmatrix} \right\} \\
1515
&= \left\{ \begin{pmatrix}1 & 2\end{pmatrix}, \begin{pmatrix}2 & 3\end{pmatrix}, \begin{pmatrix}1 & 3\end{pmatrix} \right\} \\
1616
\begin{pmatrix}1 & 2 & 3\end{pmatrix}H &= H \ (\text{since H is a subgroup})
@@ -224,7 +224,7 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
224224
\implies \exists \; u, v \in \mathbb{Z} \text{ s.t. } a u + v n &= 1 \text{ (Bezout's Theorem)} \\
225225
\implies au &\equiv 1 \pmod n
226226
\end{align*}
227-
Then $\overline{u} \in R_n^*$ is $a^{-1}$
227+
Then $\overline{u} \in R_n^*$ is $a^{-1}$ as $a^{-1}$ has an inverse $a$ which implies $(a, n) = 1$.
228228

229229
\begin{proof}
230230
Note $|R_n^*| = \phi(n)$.

Groups/05-direct.tex

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ \section{Direct Products and Small Groups}
33
\subsection{Direct Products}
44

55
\begin{definition}[(External) direct product of groups]
6-
Let $H$ and $K$ be groups. We can construct the (external) \emph{direct product}, $H \times K$, with a set $\{ (h, k),\ h \in H, k \in K \}$ and an operation:
6+
Let $H$ and $K$ be groups. We can construct the (external) \emph{direct product}, $H \times K$, with a set $\{ (h, k): h \in H, k \in K \}$ and an operation:
77
\begin{align*}
88
(h_1, k_1) * (h_2, k_2) &= (h_1 *_H h_2, k_1 *_K k_2) \\
99
&= (h_1 h_2, k_1 k_2)
@@ -75,19 +75,19 @@ \subsection{Direct Products}
7575
\text{Also, } (h, k)^n &= (h^n, k^n) \\
7676
&= (e_H, e_K) \\
7777
\implies o(h) \mkern-5mu &\;\mid n \text{ and } o(k) \mid n \text{ by \Cref{lem:five}}. \\
78-
\implies \mkern-5mu &\;\mid n.
78+
\implies m \mkern-5mu &\;\mid n.
7979
\end{align*}
80-
Thus we know when $C_m \times C_n \cong C_{mn}$ (Sheet 2, qn 10).
8180
\end{proof}
8281

82+
Thus we know when $C_m \times C_n \cong C_{mn}$ (Sheet 2, qn 10).
8383
Recognising when a group can be written as a direct product of subgroups is trickier.
8484

8585
\begin{proposition}[Direct Product Theorem]
8686
Let $G$ be a group with subgroups $H$ and $K$, if:
8787
\begin{enumerate}
8888
\item each element of $G$ can be written as $hk$, for some $h \in H$, $k \in K$, \label{5.1-1}
8989
\item $H \cap K = \{ e \}$ \label{5.1-2}
90-
\item $hk = kh \; \forall \; h \in H,\ k \in K$ \label{5.1-3}
90+
\item $hk = kh \quad \forall \; h \in H,\ k \in K$ \label{5.1-3}
9191
\end{enumerate}
9292
Then $G \cong H \times K$ and we call $G$ the (internal) direct product of $H$ and $K$.
9393
\end{proposition}
@@ -190,9 +190,7 @@ \subsection{Small Groups}
190190
&= b^{-k} a \\
191191
\text{So } (b^k a) (b^k a) &= b^k b^{-k} a a \\
192192
&= e.
193-
\end{align*}
194-
We can check
195-
\begin{align*}
193+
\intertext{We can check}
196194
\theta : D_{2n} &\to G \\
197195
r &\mapsto b \\
198196
t &\mapsto a
@@ -222,7 +220,7 @@ \subsubsection{Classifying groups of small order}
222220
\implies G &\cong C_4
223221
\intertext{Suppose not, then let}
224222
1 \neq a \in G &\implies o(a) = 2 \\
225-
&\implies G \text{ is abelian (qn 7, sheet 1)} \\
223+
&\implies G \text{ is abelian (Sheet 1, Q7)} \\
226224
&\implies C_2 \cong \langle a \rangle \trianglelefteq G.
227225
\end{align*}
228226
Let $b \in G \setminus \langle a \rangle$, then $1 \neq b \in G$ so $C_2 \cong \langle b \rangle \trianglelefteq G$. \\
@@ -245,8 +243,8 @@ \subsubsection{Classifying groups of small order}
245243
\end{lemma}
246244

247245
\begin{proof}
248-
Let $1 \neq g \in G \implies o(g) = 2, 3 \text{ or } 6$ by \Cref{cor:two}.
249-
If all non-identity elements have order $2 \implies |G|$ is a $2$-power \Lightning (qn 7, Sheet 1). \\
246+
Let $1 \neq g \in G \implies o(g) = 2, 3 \text{ or } 6$ by \nameref{cor:two}.
247+
If all non-identity elements have order $2 \implies |G|$ is a $2$-power \Lightning \ (Sheet 1, Q7). \\
250248
So $\exists \; b \in G, o(b) = 3$ (Note if $o(g) = 6$ then $o(g^2) = 3$). \\
251249
$C_3 \cong \langle b \rangle \trianglelefteq G$, RHS by \Cref{lem:twelve} (since of index 2).
252250

Groups/06-actions.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -735,7 +735,7 @@ \subsection{Conjugacy Action}
735735
If $z \in Z(G)$
736736
\begin{align*}
737737
\implies \operatorname{ccl}_G(z) &= \{ \underbrace{gzg^{-1}}_{gg^{-1} z = z} : g \in G\} \\
738-
&= \{z\} \\
738+
&= \{z\}
739739
\end{align*}
740740
If $|\operatorname{ccl}_G(z)| = 1$, note $z = e z e^{-1} \in \operatorname{ccl}_G(z)$.
741741
So $gzg^{-1} = z \ \forall \; g \in G$.

Groups/07-matrix.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -129,7 +129,7 @@ \subsection{Actions of \texorpdfstring{$\operatorname{GL}_n(\mathbb{C})$}{GLₙ(
129129
(A, v) &\mapsto Av.
130130
\end{align*}
131131
Note $Iv = v$, $(AB)v = A(B(v))$.
132-
This action is faithful: $Av = v \forall \; v \in \mathbb{C}^n \implies A = I_n$ (consider $v = e_i$).
132+
This action is faithful: $Av = v \quad \forall \; v \in \mathbb{C}^n \implies A = I_n$ (consider $v = e_i$).
133133
The action has two orbits
134134
\begin{align*}
135135
\operatorname{Orb}_{\operatorname{GL}_n(\mathbb{C})}(\underline{0}) &= \{\underline{0}\} \\
@@ -372,7 +372,7 @@ \subsubsection{In 3 dimensions}
372372
\begin{align*}
373373
\det (A - I) &= \det (A - A A^T) \\
374374
&= \det A \det (I - A^T) \\
375-
&= 1 \cdot \det (I - A)^t \\
375+
&= 1 \cdot \det (I - A)^T \\
376376
&= \det (I - A) \\
377377
&= (-1)^3 \det (A - I) \\
378378
&= - \det (A - I) \\

Groups/groups.pdf

-3.66 KB
Binary file not shown.

0 commit comments

Comments
 (0)