-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathresnet_cifar.py
150 lines (110 loc) · 4.67 KB
/
resnet_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn import Parameter
__all__ = ['ResNet_s', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
def _weights_init(m):
classname = m.__class__.__name__
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight)
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, option='A'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
"""
For CIFAR10 ResNet paper uses option A.
"""
self.shortcut = LambdaLayer(lambda x:
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
elif option == 'B':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet_s(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, use_norm=False, return_features=False):
super(ResNet_s, self).__init__()
self.in_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
if use_norm:
self.fc = NormedLinear(64, num_classes)
else:
self.fc = nn.Linear(64, num_classes)
self.apply(_weights_init)
self.return_encoding = return_features
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, out.size()[3])
encoding = out.view(out.size(0), -1)
out = self.fc(encoding)
if self.return_encoding:
return out, encoding
else:
return out
def resnet20():
return ResNet_s(BasicBlock, [3, 3, 3])
def resnet32(num_classes=10, use_norm=False, return_features=False):
return ResNet_s(BasicBlock, [5, 5, 5], num_classes=num_classes, use_norm=use_norm, return_features=return_features)
def resnet44():
return ResNet_s(BasicBlock, [7, 7, 7])
def resnet56():
return ResNet_s(BasicBlock, [9, 9, 9])
def resnet110():
return ResNet_s(BasicBlock, [18, 18, 18])
def resnet1202():
return ResNet_s(BasicBlock, [200, 200, 200])
def test(net):
import numpy as np
total_params = 0
for x in filter(lambda p: p.requires_grad, net.parameters()):
total_params += np.prod(x.data.numpy().shape)
print("Total number of params", total_params)
print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters()))))
if __name__ == "__main__":
for net_name in __all__:
if net_name.startswith('resnet'):
print(net_name)
test(globals()[net_name]())
print()