forked from fgnt/nn-gev
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeamform.py
116 lines (103 loc) · 3.74 KB
/
beamform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import os
import numpy as np
import chainer
from chainer import Variable
from chainer import cuda
from chainer import serializers
from tqdm import tqdm
from chime_data import gen_flist_simu, \
gen_flist_real, get_audio_data, get_audio_data_with_context
from fgnt.beamforming import gev_wrapper_on_masks
from fgnt.signal_processing import audiowrite, stft, istft
from fgnt.utils import Timer
from fgnt.utils import mkdir_p
from nn_models import BLSTMMaskEstimator, SimpleFWMaskEstimator
parser = argparse.ArgumentParser(description='NN GEV beamforming')
parser.add_argument('flist',
help='Name of the flist to process (e.g. tr05_simu)')
parser.add_argument('chime_dir',
help='Base directory of the CHiME challenge.')
parser.add_argument('output_dir',
help='The directory where the enhanced wav files will '
'be stored.')
parser.add_argument('model',
help='Trained model file')
parser.add_argument('model_type',
help='Type of model (BLSTM or FW)')
parser.add_argument('--gpu', '-g', default=-1, type=int,
help='GPU ID (negative value indicates CPU)')
args = parser.parse_args()
# Prepare model
if args.model_type == 'BLSTM':
model = BLSTMMaskEstimator()
elif args.model_type == 'FW':
model = SimpleFWMaskEstimator()
else:
raise ValueError('Unknown model type. Possible are "BLSTM" and "FW"')
serializers.load_hdf5(args.model, model)
if args.gpu >= 0:
cuda.get_device(args.gpu).use()
model.to_gpu()
xp = np if args.gpu < 0 else cuda.cupy
chainer.no_backprop_mode()
stage = args.flist[:2]
scenario = args.flist.split('_')[-1]
# CHiME data handling
if scenario == 'simu':
flist = gen_flist_simu(args.chime_dir, stage)
elif scenario == 'real':
flist = gen_flist_real(args.chime_dir, stage)
else:
raise ValueError('Unknown flist {}'.format(args.flist))
for env in ['caf', 'bus', 'str', 'ped']:
mkdir_p(os.path.join(args.output_dir, '{}05_{}_{}'.format(
stage, env, scenario
)))
t_io = 0
t_net = 0
t_beamform = 0
# Beamform loop
for cur_line in tqdm(flist):
with Timer() as t:
if scenario == 'simu':
audio_data = get_audio_data(cur_line)
context_samples = 0
elif scenario == 'real':
audio_data, context_samples = get_audio_data_with_context(
cur_line[0], cur_line[1], cur_line[2])
t_io += t.msecs
Y = stft(audio_data, time_dim=1).transpose((1, 0, 2))
Y_var = Variable(np.abs(Y).astype(np.float32))
if args.gpu >= 0:
Y_var.to_gpu(args.gpu)
with Timer() as t:
N_masks, X_masks = model.calc_masks(Y_var)
N_masks.to_cpu()
X_masks.to_cpu()
t_net += t.msecs
with Timer() as t:
N_mask = np.median(N_masks.data, axis=1)
X_mask = np.median(X_masks.data, axis=1)
Y_hat = gev_wrapper_on_masks(Y, N_mask, X_mask)
t_beamform += t.msecs
if scenario == 'simu':
wsj_name = cur_line.split('/')[-1].split('_')[1]
spk = cur_line.split('/')[-1].split('_')[0]
env = cur_line.split('/')[-1].split('_')[-1]
elif scenario == 'real':
wsj_name = cur_line[3]
spk = cur_line[0].split('/')[-1].split('_')[0]
env = cur_line[0].split('/')[-1].split('_')[-1]
filename = os.path.join(
args.output_dir,
'{}05_{}_{}'.format(stage, env.lower(), scenario),
'{}_{}_{}.wav'.format(spk, wsj_name, env.upper())
)
with Timer() as t:
audiowrite(istft(Y_hat)[context_samples:], filename, 16000, True, True)
t_io += t.msecs
print('Finished')
print('Timings: I/O: {:.2f}s | Net: {:.2f}s | Beamformer: {:.2f}s'.format(
t_io / 1000, t_net / 1000, t_beamform / 1000
))