-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport.html
3082 lines (3030 loc) · 41.7 KB
/
report.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Final Report: AncestralClust Alg
Author: Yu Sun
Last update 2021.04.30
Github: https://github.com/YuSunwisc/Phylo563_FinalProject
Contact: [email protected]
## 1.Introduction
This project is going to do a simulation about ancestral sequence reconstruction with less randomly selected samples. It's well known that clustering is a fundamental task in the analysis of nucleotide sequences, and traditional clustering methods have mostly focused on optimizing high speed clustering of highly similar sequences, but state-of-art clustering method starting with less samples may also led to a good result. There we're going to run an "homemade" version of AncestralClust alg with ssRNA data.
## 2.Theoretical Backgrpund
The main idea comes from recent paper about a new algorithm AncestralClust with [paper](https://www.biorxiv.org/content/10.1101/2021.01.08.426008v1) and [Github](https://github.com/lpipes/ancestralclust). The idea is nice and clear, but due to some technical issue, this new algrithom couldn't run on my local computer with an [un solved issue](https://github.com/lpipes/AncestralClust/issues/4). I reinterpreted the whole idea of by using a combination of Shell, R and Python.
## 3.Data
In this project we analyzed approximately 8GB of ssRNA data
downloaded from National Library of Medicine (NIH): NCBI Virus: Severe acute respiratory syndrome coronavirus 2 data hub [website](https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%20coronavirus%202%20(SARS-CoV-2),%20taxid:2697049&CollectionDate_dr=1950-01-01T00:00:00Z%20TO%20NOW&CreateDate_dt=1950-01-01T00:00:00Z%20TO%20NOW
). This data took the form of a single fasta file with 298,871 Nucleotide sequences, each sequence with length around 30,000 bp. Due to the limit power of my local computer, In this report we only show the result of around 3k Nucleotide sequences, and choose 1.5% of it (around 50 sequences) for initial MSA. The reason comes from 2 folder:
1. MSA process is the one of the process takeing most time in clustering problem(the other one is tree reconstruction process, it depends on the method and modle you choose, i.e. MP, ML, Distance, etc.) A typical example of run 3k sequences in local computer is down blow. This result comes from MacOS 10.15.7 platform with 1.8 GHz Dual-Core Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. It's not hard to say it's irreasonable for spending 28 hours on processing the first step of a program with no reslut.
```
$ bash muscle.sh /Users/guestadmin/Desktop/563/Phylo563_FinalProject/data/sequence_3k.fasta
MUSCLE v3.8.31 by Robert C. Edgar
http://www.drive5.com/muscle
This software is donated to the public domain.
Please cite: Edgar, R.C. Nucleic Acids Res 32(5), 1792-97.
sequence_3k 3000 seqs, max length 29915, avg length 29693
00:19:44 540 MB(6%) Iter 1 100.00% K-mer dist pass 1
00:19:44 540 MB(6%) Iter 1 100.00% K-mer dist pass 2
28:21:21 3049 MB(35%) Iter 1 91.43% Align node
```
2. Even with slighly larger random sample size(i.e. 100 sequences) for the first step, it's easy to come with a `Bus 10` error in Shell or R, which means the memory is limited. This reslut comes from running this repository on MacOS 10.15.5 platform with 2.9 GHz Dual-Core Intel Core i5 processor and 8 GB 1867 MHz DDR3 memory. This gives us the reason only choose 50 sequences as the initial step.
For more details please check [data readme](data/readme.md).
## 4. Data Analysis Procedure
Step-by-step instructions is descirbed down below.
STEP 0. Preparation
First download the fasta data into [data](/data) folder. You fasta file must have all descired sequences into one single fasta, with header as `>XXXX` for each sequence with seperate lines. Example
```
>NHOHUHI.01
AGCTTGCAAGCATGC
```
The direct to [script](/script) folder, run
```
bash 0_preparation.sh $1
```
for your terminal. $1 is your desired inital cluster size. This step install python and all required packages, and also generate all the empty `.txt` and `.fasta` file in [data](/data) for further usage.
STEP 1. Randomlt select initial data and run muscle MSA
Stay in [script](/script) folder, run
```
python 1_1_3k.py
python 1_2_initial_sequence_50.py
```
or replacing command with `py` or `python3` depending on your platform. These two files should give you [sequence_3k.fasta](/data/sequence_3k.fasta) and [initail_sequence_50.fasta](/data/initail_sequence_50.fasta) files representing the reduced size data and another fasta with only 50 random selected seqs. Then run
```
bash 1_3_muscle.sh $1
```
$1 is the FULL path of your input file. For example, you should see
```
bash muscle.sh /Users/shuqi/Desktop/563/Phylo563_FinalProject/data/example_input.fasta
MUSCLE v3.8.31 by Robert C. Edgar
http://www.drive5.com/muscle
This software is donated to the public domain.
Please cite: Edgar, R.C. Nucleic Acids Res 32(5), 1792-97.
example_MSA_input 2 seqs, max length 29903, avg length 29877
00:00:00 2 MB(0%) Iter 1 100.00% K-mer dist pass 1
00:00:00 2 MB(0%) Iter 1 100.00% K-mer dist pass 2
00:00:40 970 MB(11%) Iter 1 100.00% Align node
00:00:40 970 MB(11%) Iter 1 100.00% Root alignment
```
This should give you [initail_sequence_50_MSA.fasta](/data/initail_sequence_50_MSA.fasta) as an aligned fasta file.
If you see any privacy issue, please follow the comment details in [1_3_muscle.sh](/script/1_3_muscle.sh).
STEP 2. Prepare R enviroment and run AncestralClust alg
We strongly suggest you download R envirnment without from terminal. If you have never installed R in your system and you full understand your system, direct to [script](/script) folder and run
```
brew install r
````
If you have any issue with the further package installation, please check the details on comment of [2_1_AncestralClust.r](/script/2_1_AncestralClust.r). Then either from your R enironment or terminal, [2_1_AncestralClust.r](/script/2_1_AncestralClust.r). The detials of [2_1_AncestralClust.r](/script/2_1_AncestralClust.r) can be broken down into following steps
- 1. It uses the aligment file [initail_sequence_50_MSA.fasta](/data/initail_sequence_50_MSA.fasta) to generate a tree using Neighbor joining algorithm.
- 2. It prunes the c-1 longest edges from above tree, with c is your desired initial cluster number.
- 3. Picked a representative, which called the "centroid" for each cluster, and store the header for all centroids into [initial_clust_i_centroid.txt](/data/initial_clust_1_centroid.txt), with i represents the index of initial clusters. And put all members for each cluster into [initial_clust_i.txt](/data/initial_clust_1.txt). The choice of centroid can be creative, in the original [paper](https://www.biorxiv.org/content/10.1101/2021.01.08.426008v1) they decide to use MAP estimator to get the ancestor. In this repository, due to the limit of computation, I choose the one in the center of the subtree, which is also the one furtherest to other cluster in average as centroid.
- 4. Call python enviornment in R. By call [2_2_write_new_fasta.py](/script/2_2_write_new_fasta.py) in R, we're able to all centroid seqs from the original data [sequence_3k.fasta](/data/sequence_3k.fasta), then we put these centrod sequences into [initial_clust_i.fasta](/data/initial_clust_centroid.fasta). Then run over all the unsampled points in origianl data file [sequence_3k.fasta](/data/sequence_3k.fasta), put the sample and a centrid together into a fasta file [new_sample_j.fasta](/data/pairwise\ with\ centroids/i/new_sample_j.fasta), with j represents the j-th sample in original seqs file and i represents the centroid. In our example below you can see we will create 15k pairwise fasta file in [data/pairwise with centroids](data/pairwise with centroids) folders, but it will be much faster late do the pairwise comparison.
- 5. Do pairwise aligment and compare all distance for a new sample with different centroid, then find the centroid with shortest distance with it. Then write the new point into corresponding [initial_clust_i.txt](/data/initial_clust_2.txt) file.
- 6. Call Python and by [2_3_final_clust.py](script/2_3_final_clust.py), clean the redundant clust members. All final clust member should be in [final_clust_i.txt](/data/final_clust/final_clust_i.txt).
## 5. Reslut
We use 5 as our inital cluster size. The inital MSA process takes about 2-3 hours for 50 seqs
```
initail_sequence_50 50 seqs, max length 29903, avg length 29829
00:00:01 9 MB(0%) Iter 1 100.00% K-mer dist pass 1
00:00:01 9 MB(0%) Iter 1 100.00% K-mer dist pass 2
00:23:10 1699 MB(20%) Iter 1 100.00% Align node
00:23:10 1701 MB(20%) Iter 1 100.00% Root alignment
00:46:35 1710 MB(20%) Iter 2 100.00% Refine tree
00:46:36 1710 MB(20%) Iter 2 100.00% Root alignment
00:46:36 1710 MB(20%) Iter 2 100.00% Root alignment
01:35:46 1710 MB(20%) Iter 3 100.00% Refine biparts
02:23:25 1710 MB(20%) Iter 4 100.00% Refine biparts
```
and get the inital NJ tree as

The Final clusters plot as below
```
Clust 1: 651 in total (Centroid: FR993099.1)
FR993099.1
OB993918.1
MW276569.1
MW667185.1
MW992425.1
OB999714.1
MW925412.1
MW896268.1
OB999166.1
OA971449.1
LR884125.1
MW191328.1
MW987352.1
MZ028843.1
MW972902.1
MW720024.1
MW114981.1
MT973403.1
MW831571.1
MW782912.1
MW896540.1
MW930918.1
MW751334.1
MW673111.1
FR998939.1
MW668966.1
MW153554.1
MW669409.1
MW156891.1
MW153403.1
MW749420.1
MW782896.1
MW987194.1
FR998631.1
MW666444.1
LR884082.1
MW521687.1
MW490773.1
MW965069.1
MT520516.1
MW539792.1
MW751121.1
OA983813.1
MT772483.1
MW617633.1
MW276723.1
MW065201.1
MT642386.1
MW575563.1
FR992936.1
MW666231.1
MW994660.1
MW134192.1
MW864402.1
MW206036.1
MT831289.1
MW864049.1
MW494079.1
OA964871.1
MW642024.1
MT706385.1
FR994412.1
MW719889.1
MZ007239.1
MW972640.1
MW626208.1
MW831563.1
MT772506.1
MW586696.1
MW816399.1
MT396246.2
MW728852.1
OA968488.1
MW763286.1
MZ013001.1
MW834654.1
MT772456.1
MW923953.1
MW518820.1
MW967623.1
MT973127.1
MW332709.1
MW733251.1
MW685583.1
MW586506.1
MW276822.1
MW714012.1
FR991803.1
MW687532.1
FR993084.1
MT750022.1
MW578012.1
MW763416.1
MW738273.1
MW877084.1
MW321305.1
FR991338.1
MW969468.1
MZ010151.1
MW583360.1
MW972589.1
MW890621.1
MW914533.1
MW633919.1
MZ022143.1
MW700692.1
MW928200.1
MZ000651.1
OA964950.1
MT412244.1
OA964658.1
MW891655.1
MW728817.1
MZ024652.1
MW666307.1
MW849171.1
MW930453.1
OA965801.1
MW666414.1
MW035526.1
MW223108.1
MW505233.1
MW831580.1
MW749473.1
MW796209.1
MW549582.1
FR998951.1
MT451629.1
MT635201.1
MW916432.1
MT703961.1
MW733409.1
MT750112.1
MZ009877.1
MW882492.1
MW928303.1
MW702940.1
MW504609.1
MW818108.1
MT412200.1
MW932067.1
FR994612.1
MT972787.1
MW891483.1
MW974097.1
MW519820.1
MW993817.1
MW685611.1
MT614521.1
MW905198.1
MW764076.1
MW876935.1
MW185396.1
MW925464.1
MW973722.1
MW848250.1
LR883171.1
MW804752.1
MW403762.1
OB998471.1
OA965838.1
MW460661.1
FR994893.1
MW751417.1
MT706371.1
MW704751.1
MW698153.1
MW064346.1
MZ030247.1
FR994753.1
MW184480.1
FR997073.1
MW583203.1
HG999315.1
MW734128.1
MW581613.1
MW986382.1
MW877000.1
MW419984.1
MW793275.1
FR998216.1
MW009055.1
MW750811.1
MW782786.1
MT646071.1
MT632828.1
MT706248.1
FR990933.1
MW808417.1
MZ006802.1
MW863924.1
MW277003.1
FR994903.1
FR992797.1
MW993808.1
MW972964.1
MT706376.1
OD911181.1
MW902895.1
OD912703.1
MW750065.1
MW805042.1
FR998623.1
MZ046937.1
MW816980.1
MW154873.1
MT928962.1
MZ036876.1
MW944636.1
MW191062.1
OA965815.1
MW647970.1
MW065210.1
OD898393.1
MW035374.1
MW834786.1
MT627254.1
MW460599.1
MZ023781.1
MW972368.1
MW782895.1
MW276571.1
MW880541.1
MW825530.1
MW864416.1
OD912411.1
MW840848.1
FR998495.1
MW065092.1
MW065065.1
OD910489.1
MW696983.1
MZ039118.1
MW505189.1
MW910495.1
OD911759.1
MW567474.1
OD910293.1
MW549224.1
MW793172.1
MW792688.1
MW928364.1
MZ013314.1
MW671638.1
MW779363.1
MW190546.1
MW064534.1
FR994485.1
MT750345.1
OA964940.1
MW190874.1
MW733404.1
MW292632.1
MW758809.1
MT451798.1
MW816387.1
HG998863.1
MW896143.1
OD909683.1
MW735236.1
OA984882.1
MW975939.1
MW505032.1
MW903974.1
MW114976.1
MW911421.1
MW505341.1
MW940528.1
MW749552.1
OA965991.1
OD906959.1
MW782844.1
MW864404.1
MT467250.1
MW403659.1
FR997071.1
MW959977.1
MW155409.1
MW666897.1
MW994974.1
LR878144.1
MW925303.1
OD910759.1
MW064568.1
MW403561.1
MW763818.1
MW590923.1
MW184083.1
MW645592.1
MW890597.1
MW154960.1
MT970526.1
MW849114.1
MW566898.1
MW720341.1
MW666754.1
MW849957.1
MZ048120.1
MW558340.1
MW673198.1
MW708495.1
MT706295.1
FR994300.1
MZ024759.1
MW667092.1
MW863970.1
MW054149.1
MW471658.1
MW972950.1
MZ032603.1
MW719927.1
MW973321.1
MW522420.1
MW064454.1
FR999282.1
MW992734.1
HG999926.1
MW972506.1
HG997207.1
MW795999.1
MW739819.1
MW804966.1
MW555840.1
MW039104.1
MW707658.1
FR993418.1
MZ023290.1
FR999689.1
FR994831.1
MW668975.1
MT856687.1
MW925190.1
HG999938.1
MW719684.1
MT913047.1
MT886440.1
MT772495.1
MW882536.1
MW666496.1
OD912679.1
MW671720.1
MT846547.1
HG996998.1
MZ020723.1
MW065405.1
MT997704.1
MT886398.1
MW707714.1
MW892133.1
MW986892.1
MW855153.1
OD911741.1
MT880778.1
OD910225.1
MZ012161.1
MW064651.1
MW728488.1
MW739891.1
MW807971.1
MW446829.1
MW792625.1
FR998923.1
MT929144.1
MW714028.1
MW708881.1
MW491172.1
MW565152.1
MW626414.1
MW921756.1
MT831373.1
MW681210.1
MW495150.1
MW184889.1
OB988806.1
FR996066.1
OA999941.1
MW698182.1
MW702204.1
MW877035.1
MW738918.1
FR996176.1
MW751387.1
MW667270.1
MW902607.1
MZ012270.1
FR995662.1
OD910482.1
MW733281.1
FR991424.1
MW183969.1
MW673563.1
FR996693.1
MW923431.1
MW987208.1
MT937319.1
MW945317.1
MW773407.1
MW825383.1
MW673101.1
OA964870.1
MW064780.1
MW617802.1
MW825391.1
MW805114.1
MW592611.1
MW696344.1
FR996276.1
MT951976.1
MW547440.1
MW064678.1
OA994294.1
MT970778.1
MW522481.1
MW403623.1
MW795986.1
MW763382.1
LC547527.1
MW849035.1
MW669092.1
MT451291.1
MW773241.1
FR994820.1
FR994521.1
MZ002658.1
OB997759.1
MW689799.1
MW667328.1
MW715522.1
MW941251.1
MW505244.1
MW549983.1
MW796025.1
MW763917.1
MW817003.1
MT795875.1
MT827818.1
OC996736.1
OD908304.1
MW873958.1
OB995842.1
MW905732.1
MW932713.1
MW816463.1
FR991470.1
FR998773.1
MW751346.1
MW906884.1
MW914458.1
MW084472.1
MW669437.1
OA981948.1
MW743299.1
MW810358.1
MW840804.1
MW963217.1
MW547507.1
FR993904.1
FR995804.1
MW673041.1
MT627305.1
FR997963.1
FR999355.1
FR996585.1
FR998266.1
FR996589.1
MW153906.1
OD908010.1
MW964767.1
MW064392.1
MW925623.1
MW866029.1
MW930118.1
MT627623.1
OA966001.1
MW190527.1
MT232688.1
MW749317.1
MW669715.1
MW868404.1
MW780797.1
MZ003555.1
MW671611.1
MT971713.1
MW923530.1
MT759588.1
MW877309.1
MW986774.1
MW860728.1
MW667522.1
FR994595.1
MT750124.1
MW813538.1
MW421941.1
HG997820.1
MT750041.1
MW804733.1
MW693492.1
MZ028530.1
FR990252.1
MW763977.1
MW763803.1
FR999428.1
OB989711.1
MW522478.1
MW731314.1
MW332670.1
MW771889.1
MW725754.1
MW975192.1
MW064502.1
MZ046874.1
MW751374.1
MZ010525.1
FR995071.1
MW923090.1
MW808067.1
MZ032636.1
MW778639.1
MW844284.1
MW869880.1
MW665686.1
FR999617.1
MW484835.1
MW966200.1
MW931598.1
MW704415.1
MW751208.1
MW864297.1
MW837449.1
FR995631.1
MW524947.1
MW064900.1
MW341840.1
MW403535.1
HG997233.1
MW617859.1
MW793077.1
MW280168.1
MW722230.1
MZ012607.1
MW720054.1
MW047018.1
MW893608.1
MW834986.1
MW893791.1
MW749607.1
MW065018.1
FR998581.1
MW795990.1
OD911305.1
MW973052.1
OB992862.1
MW735936.1
MW792838.1
FR994760.1
MW673327.1
MW666887.1
MW869265.1
MW184128.1
MW916714.1
MW923414.1
MW773863.1
MT467238.1
OB998375.1
MW699205.1
FR994833.1
OB986370.1
FR999820.1
MW852074.1
MW972598.1
MW696288.1
MW894335.1
MW860409.1
MW751611.1
MW326515.1
MZ038777.1
MW662141.1
MW796037.1
MW332671.1
MT577599.1
OD906886.1
OA972213.1
MW821865.1
LR963413.1
MW666399.1
FR994658.1
MW065197.1
MW994772.1
FR993954.1
MZ039315.1
FR996963.1
MW064874.1
MT496975.1
MW738901.1
MT890241.1
MW565541.1
OD912654.1
MZ032408.1
MW848887.1
MW893596.1
MW669485.1
MT973210.1
MW840451.1
MW156267.1
OA966046.1
MW023463.1
MT557570.1
MW751513.1
MW739606.1
OA966226.1
MW720453.1
MW734590.1
MT772559.1
MW882002.1
MW741669.1
MW944449.1
FR994373.1
MT632575.1
MW705466.1
MZ032506.1
MZ035531.1
MW191198.1
MW702442.1
FR991406.1
MW276654.1
MT970011.1
MW687488.1
OA964809.1
MT971553.1
MW701190.1
MT971008.1
MW064572.1
LR814190.1
MW793229.1
OD911314.1
MW728821.1
MT971146.1
OB998245.1
MW825912.1
FR994600.1
MW751240.1
MW681184.1
MW403701.1
MW684254.1
MW928384.1
MW545455.1
MW035492.1
MW930580.1
MW697926.1
MW518197.1
MZ029462.1
Clust 2: 204 in total (Centroid: MW783273.1)
MW893732.1
MW974486.1
MW783273.1
MW778567.1
MW986524.1
MT451657.1
MW759611.1
MW906855.1
MW896364.1
MW772012.1
FR996362.1
MW185643.1
MZ010868.1
MW549795.1
MW771962.1
MW156565.1
MT969998.1
MW986567.1
MW958134.1
MW850269.1
MW513511.1
MW863948.1
MW277128.1
MW993273.1
MW365023.1
MW276439.1
MW808677.1
MW581594.1
MW053827.1
MZ010713.1
MZ025891.1
MW565603.1
MW905139.1
MW934222.1
MW882792.1
MW779233.1
MW586537.1
MW767333.1
MW986494.1
MW817274.1
MW053877.1
MW715555.1
MW197488.1
MZ044595.1
MW694255.1
MW080312.1
MW631918.1
MZ024464.1
LR883413.1
MW991108.1
MT811473.1
FR993448.1
MW153755.1
MT811519.1
MT972471.1
MW851381.1
MW578052.1
MW942279.1
MT969552.1
MW808710.1
MW942524.1
MW406789.1
MT831444.1
MW154109.1
MW777631.1
MT683403.1
MW590796.1
MW157176.1
MW635955.1
MW986229.1
FR996733.1
MW783235.1
MW583310.1
MT811706.1
FR996046.1
MT971315.1
MT810884.1
MW715250.1
MW280492.1
MW586471.1
MW586144.1
MW993671.1
LR883161.1
MT972595.1
MZ002341.1
FR996466.1
MZ002402.1
MZ013580.1
MW276232.1
MW993665.1
MZ023780.1
MZ024189.1
MW519829.1
MW995119.1
MW994222.1
MW750942.1
MT843239.1
MW972286.1
MW276741.1
MW990456.1
MZ046629.1
MZ003019.1
MW155775.1
MW941819.1
MW700462.1
MW968455.1
MW990850.1
MW894485.1
MW994990.1
MT451470.1
MW154213.1
MT459841.1
MW578018.1
MW411906.1
LR878033.1
MZ038710.1
MW964190.1
MW778367.1
MW975388.1
MW540244.1
MT969691.1
MW974910.1
MW660891.1
MW185721.1
MZ006901.1
MZ011932.1
MW586633.1
MW406679.1
MT810823.1
MW870111.1
MW870045.1
MW369424.1
MW901636.1
MW846050.1
MW767239.1
MW994208.1
MW539848.1
MW583140.1
MZ029362.1
MW653636.1
MW868364.1
MW994094.1
MW582234.1
MW851538.1
MW783336.1
MT981108.1
MZ013386.1
MW906618.1
MW752499.1
MW626510.1
MW771922.1
MW778013.1
MW571147.1
MT971574.1
MW835119.1
MW844310.1
MW863803.1
MT973334.1
MW154730.1
MW777420.1
MT786866.1
MZ001013.1
MT810560.1
MZ039247.1
MZ039752.1
MT444558.1
MW777904.1
LR878053.1
MT956776.1
MT675954.1
MW796729.1
MT846453.1
MW084443.1
LR883707.1
MW777491.1
MT810981.1
MW771790.1
MW519803.1
FR993134.1
MW577917.1
MT919774.1
LR883446.1
MW985391.1
MW808674.1
MW993828.1
MT810772.1
MT632515.1
MZ012992.1
MT969716.1
MW750989.1
MW974903.1
MZ002831.1
MW645874.1
MZ011258.1
MW153727.1
MW913821.1
MZ034229.1
FR991085.1
MW677965.1
MW566938.1
MW772212.1
MW540179.1
MZ002881.1
MW519666.1
Clust 3: 847 in total (Centroid: OB986922.1)
OA970084.1
OB986922.1
OA968108.1
OA981410.1
OA981670.1
MZ029421.1
LR881550.1
MT970955.1
OB999160.1
OC996200.1
OA983334.1
OB998596.1
OA989794.1