-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLeNet.py
41 lines (36 loc) · 1.29 KB
/
LeNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
class LeNet(nn.Module):
def __init__(self, label_num=10):
super(LeNet, self).__init__()
self.conv_pool_1 = nn.Sequential(
# 卷积层 (1*28*28) -> 6*28*28)
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
# 池化层 (6*28*28) -> (6*14*14)
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.conv_pool_2 = nn.Sequential(
# 卷积层 (6*14*14) -> (16*10*10)
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0),
nn.ReLU(),
# 池化层 (16*10*10) -> (16*5*5)
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
# 将卷积池化后的tensor拉成向量
nn.Flatten(),
# 全连接层 16*5*5 -> 120
nn.Linear(16 * 5 * 5, 120),
nn.ReLU(),
# 全连接层 120 -> 84
nn.Linear(120, 84),
nn.ReLU(),
# 全连接层 84 -> 10
nn.Linear(84, label_num)
)
def forward(self, x):
x = self.conv_pool_1(x)
x = self.conv_pool_2(x)
x = self.fc(x)
return x