-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_RAT.py
265 lines (185 loc) · 6.8 KB
/
main_RAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 6, 7"
import numpy as np
import pickle
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
from PairedDataSet import PairedData
from Model_RAT import RAT
from losses import CharbonnierLoss, FocalRegionLoss
from utils import tensor2img, save_img, save_itk
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import random
import warnings
warnings.simplefilter("ignore")
import time
def set_seeds(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def mkdir(p):
isExists = os.path.exists(p)
if isExists:
pass
else:
os.makedirs(p)
print("make directory successfully:{}".format(p))
def save_model(model, save_path, suf=''):
save_path = os.path.join(save_path,'model_{}.pth'.format(suf))
torch.save(model.cpu().module.state_dict(), save_path)
model.cuda()
def cal_psnr_numpy(img1, img2, data_range=255):
B, H, W, C = img1.shape
mse = (img1 - img2) ** 2
mse = np.mean(mse.reshape(B, -1), axis=1)
return list(10 * np.log10(data_range**2/mse))
def save_multiple_img(img, name_list, save_path):
B = img.shape[0]
for i in range(B):
save_img(img[i], os.path.join(save_path, name_list[i]))
def plot_psnr(data, label, save_path ):
l = len(data)
axis = np.linspace(1, l, l)
fig = plt.figure()
plt.title(label)
plt.plot(
axis,
data,
label=label
)
plt.legend()
plt.xlabel('Iteration')
plt.ylabel(label)
plt.grid(True)
plt.savefig(save_path)
plt.close(fig)
set_seeds()
data_root = "/home/data/zhiwen/dataset/CT/AAPM/PNG/512x512"
save_path = "./RAT"
mkdir(save_path)
batch_size = 8
lr = 2e-4
train_iter = 2e5
eval_interval = 1000
loss_beta = 1e-3
'''
Prepare DataLoader
'''
print('Load Data')
data_set = {'train':PairedData(root=data_root, target='train', use_fine_mask = True, use_coarse_mask=False),
'test': PairedData(root=data_root, target='test', use_fine_mask = True, use_coarse_mask=False, use_num=100)
}
data_loader = {
'train': DataLoader(data_set['train'], batch_size=batch_size, shuffle=True),
'test': DataLoader(data_set['test'], batch_size=1)
}
datasize = {'train': len(data_loader['train'].dataset),
'test': len(data_loader['test'].dataset),
}
print(datasize)
'''
Prepare Model
'''
loss_fun = FocalRegionLoss(beta=loss_beta)
G=RAT(loss_fun = loss_fun)
if torch.cuda.is_available():
G.cuda()
G = nn.DataParallel(G, device_ids=range(torch.cuda.device_count()))
optimizer_G = torch.optim.Adam(G.parameters(),lr = lr, betas = (0.5, 0.999))
lr_scheduler_G = CosineAnnealingLR(optimizer_G, train_iter, eta_min=1.0e-6)
'''
Train Model
'''
record_metrics={
"psnr":[],
"loss":[]
}
epoch_num = int(np.ceil(train_iter/np.floor(datasize['train']/batch_size)))
pbar = tqdm(total=train_iter)
psnr_max = 0
for epoch in range(epoch_num):
for _,data in enumerate(data_loader['train']):
hr_img, lr_img, input_mask, _, name_list = data
lr_img = lr_img.type(torch.FloatTensor).cuda()
hr_img = hr_img.type(torch.FloatTensor).cuda()
input_mask = input_mask.type(torch.FloatTensor).cuda()
# import pdb
# pdb.set_trace()
#################
# train G
#################
G.train()
optimizer_G.zero_grad()
loss_G = G(lr_img, input_mask, hr_img).mean()
loss_G.backward()
optimizer_G.step()
record_metrics['loss'].append(loss_G.item())
torch.cuda.empty_cache()
lr_scheduler_G.step()
counter = pbar.n
if counter % eval_interval==0:
psnr=[]
G.eval()
with torch.no_grad():
for _,data in enumerate(tqdm(data_loader['test'])):
hr_img, lr_img, input_mask, _, name_list = data
lr_img = lr_img.type(torch.FloatTensor).cuda()
input_mask = input_mask.type(torch.FloatTensor).cuda()
# import pdb
# pdb.set_trace()
sr_img = G(lr_img, input_mask).detach().cpu()
torch.cuda.empty_cache()
sr_img = tensor2img(sr_img)
hr_img = tensor2img(hr_img)
psnr += cal_psnr_numpy(sr_img, hr_img, data_range=255)
file_path = os.path.join(save_path, 'val_img')
mkdir(file_path)
save_multiple_img(sr_img, name_list, file_path)
# import pdb
# pdb.set_trace()
psnr_mean = np.mean(psnr)
record_metrics['psnr'].append(psnr_mean)
if psnr_mean>psnr_max:
psnr_max = psnr_mean
file_path = os.path.join(save_path, 'checkpoint')
mkdir(file_path)
save_model(G, file_path, suf='best')
if counter>train_iter-eval_interval*100:
save_model(G, file_path, suf=str(counter))
plot_psnr(record_metrics['loss'], 'train loss', os.path.join(save_path, 'train_loss.pdf'))
plot_psnr(record_metrics['psnr'], 'val psnr', os.path.join(save_path, 'val_psnr.pdf'))
pbar.set_description("loss:{:6}, psnr:{:6}".format(record_metrics['loss'][-1], record_metrics['psnr'][-1]))
pbar.update()
if counter>=train_iter:
break
if counter>=train_iter:
break
with open(os.path.join(save_path, "record_info.bin"),'wb') as f:
pickle.dump(record_metrics, f)
'''
test image
'''
test_dataset="AAPM"
G.load_state_dict(torch.load(os.path.join(save_path, 'checkpoint', "model_best.pth")))
G.eval()
time_list = []
with torch.no_grad():
for counter, data in enumerate(tqdm(data_loader['test'])):
_, lr_img, mask_fine, mask_coase, name_list = data
lr_img = lr_img.type(torch.FloatTensor).cuda()
input_mask = mask_fine.type(torch.FloatTensor).cuda()
sr_img = G(lr_img, input_mask).detach().cpu()
sr_img = tensor2img(sr_img)
file_path = os.path.join(save_path, "test_img_{}".format(test_dataset))
mkdir(file_path)
save_multiple_img(sr_img, name_list, file_path)
torch.cuda.empty_cache()