@@ -406,7 +406,7 @@ temperature = c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70,
406
406
70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81
407
407
)
408
408
fail_temperature <- data.frame(fail = fail, temperature = temperature)
409
- ggplot(fail_temperature, aes(temperature, .. count.. , fill = fail)) +
409
+ ggplot(fail_temperature, aes(temperature, after_stat( count) , fill = fail)) +
410
410
geom_density(position = "fill") +
411
411
geom_point(aes(temperature, c(0.75, 0.25)[as.integer(fail)]),
412
412
shape = 21, colour = "blue", fill = "yellow") +
@@ -1309,7 +1309,7 @@ boxplots
1309
1309
1310
1310
(ref: fig-symbols ) 符号图提供的六种基本符号
1311
1311
1312
- ``` {r symbols,fig.width=4.8,fig.height=4.8,fig.cap="(ref:fig-symbols)",fig.scap="(ref:fig-symbols-s)"}
1312
+ ``` {r symbols,fig.width=4.8,fig.height=4.8,fig.cap="(ref:fig-symbols)",fig.scap="(ref:fig-symbols-s)",warning=FALSE }
1313
1313
demo("symbols_all", echo = FALSE, package = "MSG")
1314
1314
```
1315
1315
@@ -1464,7 +1464,7 @@ qnorm(seq(0.1, .9, .2))
1464
1464
1465
1465
R 中 QQ 图的函数为 ` qqplot() ` ,由于正态分布是我们经常检验的分布,R 也直接提供了一个画正态分布 QQ 图的函数 ` qqnorm() ` ,这两个函数都在基础包 ** stats** 包中,它们的用法如下:
1466
1466
1467
- ``` {r qqplot-usage}
1467
+ ``` {r qqplot-usage,warning=FALSE }
1468
1468
usage(qqplot)
1469
1469
usage(stats:::qqnorm.default)
1470
1470
usage(qqline)
@@ -1864,7 +1864,7 @@ print(rpart(Species ~ ., iris), digits = 2)
1864
1864
1865
1865
R 中 ** aplpack** 包 [ @aplpack ] 提供了一个函数 ` bagplot() ` 可以用来画二维箱线图,其用法如下:
1866
1866
1867
- ``` {r bagplot-usage}
1867
+ ``` {r bagplot-usage,warning=FALSE }
1868
1868
library(aplpack, warn.conflicts = FALSE)
1869
1869
usage(bagplot)
1870
1870
```
@@ -1923,7 +1923,7 @@ News 上关于这个包的一篇介绍性文章,文章标题将这个包描述
1923
1923
1924
1924
(ref: fig-windrose ) 展示风力大小和频数的风向图:将风向分为八个方向,每个方向用一根“指针”来表示该方向上风力的具体情况。图的上方是风向和风速的图例。从图中可以看出,该地区最常刮东北风,因为东北方向的指针最长;相对来说西风较少。从里到外第一节指针的长度大约是 7 \% ,因此 0 \~ 10 km/h 的东北风的频率大约是 7 \% 。无风的频率大约是 8 \% 。
1925
1925
1926
- ``` {r windrose,fig.width=5.4,fig.height=4.6,results="hide",fig.cap="(ref:fig-windrose)",fig.scap="(ref:fig-windrose-s)",small.mar = FALSE}
1926
+ ``` {r windrose,fig.width=5.4,fig.height=4.6,results="hide",fig.cap="(ref:fig-windrose)",fig.scap="(ref:fig-windrose-s)",small.mar = FALSE,warning=FALSE }
1927
1927
library(plotrix) # 直接取自 oz.windrose() 函数的例子
1928
1928
windagg <- matrix(c(
1929
1929
8, 0, 0, 0, 0, 0, 0,
@@ -1933,8 +1933,7 @@ windagg <- matrix(c(
1933
1933
1, 4, 1, 2, 1, 2, 4,
1934
1934
0, 3, 1, 3, 1
1935
1935
), nrow = 5, byrow = TRUE)
1936
- par(mar = c(0.5, 0.5, 4.0, 0.5))
1937
- oz.windrose(windagg)
1936
+ oz.windrose(windagg, wrmar = c(0.5, 0.5, 4.0, 0.5))
1938
1937
```
1939
1938
1940
1939
0 commit comments