-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
2233 lines (2097 loc) · 73 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@Article{lasso1996,
author = {Robert Tibshirani},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
number = {1},
pages = {267--288},
title = {Regression Shrinkage and Selection via the {Lasso}},
volume = {58},
year = {1996},
url = {http://www.jstor.org/stable/2346178},
}
@article{lar2004,
author = {Bradley Efron and Trevor Hastie and Iain Johnstone and Robert Tibshirani},
title = {{Least angle regression}},
volume = {32},
journal = {The Annals of Statistics},
number = {2},
publisher = {Institute of Mathematical Statistics},
pages = {407--499},
keywords = {boosting, coefficient paths, Lasso, Linear regression, Variable selection},
year = {2004},
doi = {10.1214/009053604000000067},
}
@article{scad2008,
author = {Yongdai Kim and Hosik Choi and Hee-Seok Oh},
title = {Smoothly Clipped Absolute Deviation on High Dimensions},
journal = {Journal of the American Statistical Association},
volume = {103},
number = {484},
pages = {1665-1673},
year = {2008},
doi = {10.1198/016214508000001066},
}
@article{mcp2010,
author = {Cun-Hui Zhang},
title = {Nearly unbiased variable selection under minimax concave penalty},
volume = {38},
journal = {The Annals of Statistics},
number = {2},
publisher = {Institute of Mathematical Statistics},
pages = {894 -- 942},
year = {2010},
doi = {10.1214/09-AOS729},
}
@article{Tsagris2018,
author = {Tsagris M, Papadakis M.},
title = {Taking {R} to its limits: 70+ tips},
volume = {6},
journal = {PeerJ Preprints},
number = {e26605v1},
publisher = {Institute of Mathematical Statistics},
year = {2018},
doi = {10.7287/peerj.preprints.26605v1},
}
@article{Tsagris2022,
author = {Michail Tsagris and Manos Papadakis},
title = {Forward Regression in {R}: From The Extreme Slow to the Extreme Fast},
journal = {Journal of Data Science},
volume = {16},
number = {4},
year = {2022},
pages = {771--780},
doi = {10.6339/JDS.201810_16(4).00006},
issn = {1680-743X},
publisher = {School of Statistics, Renmin University of China}
}
@Book{xie2015,
title = {Dynamic Documents with {R} and knitr},
author = {Yihui Xie},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2015},
edition = {2nd},
note = {ISBN 978-1498716963},
url = {https://yihui.org/knitr/},
}
@Article{Wei2009,
title = {《红楼梦》前80回与后40回某些文风差异的统计分析(两个独立二项总体等价性检验的一个应用)},
author = {韦博成},
journal = {应用概率统计},
year = {2009},
volume = {25},
number = {4},
pages = {441-448},
doi = {10.3969/j.issn.1001-4268.2009.04.012},
}
@Article{Brunson2020,
title = {{ggalluvial}: Layered Grammar for Alluvial Plots},
author = {Jason Cory Brunson},
year = {2020},
journal = {Journal of Open Source Software},
volume = {5},
number = {49},
pages = {2017},
doi = {10.21105/joss.02017},
}
@Article{Song2011,
title = {两个二项总体成功概率的比较},
author = {宋泽熙},
journal = {中国校外教育(理论)},
year = {2011},
volume = {z1},
pages = {81},
doi = {10.3969/j.issn.1004-8502-B.2011.z1.0919},
}
@article{Rigby2005,
doi = {10.1111/j.1467-9876.2005.00510.x},
year = {2005},
month = jun,
publisher = {Wiley},
volume = {54},
number = {3},
pages = {507--554},
author = {R. A. Rigby and D. M. Stasinopoulos},
title = {Generalized additive models for location, scale and shape (with discussion)},
journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)}
}
@article{Bickel1975,
author = {P. J. Bickel and E. A. Hammel and J. W. O'Connell},
title = {Sex Bias in Graduate Admissions: Data from Berkeley},
journal = {Science},
volume = {187},
number = {4175},
pages = {398-404},
year = {1975},
doi = {10.1126/science.187.4175.398},
abstract = {Examination of aggregate data on graduate admissions to the University of California, Berkeley, for fall 1973 shows a clear but misleading pattern of bias against female applicants. Examination of the disaggregated data reveals few decision-making units that show statistically significant departures from expected frequencies of female admissions, and about as many units appear to favor women as to favor men. If the data are properly pooled, taking into account the autonomy of departmental decision making, thus correcting for the tendency of women to apply to graduate departments that are more difficult for applicants of either sex to enter, there is a small but statistically significant bias in favor of women. The graduate departments that are easier to enter tend to be those that require more mathematics in the undergraduate preparatory curriculum. The bias in the aggregated data stems not from any pattern of discrimination on the part of admissions committees, which seem quite fair on the whole, but apparently from prior screening at earlier levels of the educational system. Women are shunted by their socialization and education toward fields of graduate study that are generally more crowded, less productive of completed degrees, and less well funded, and that frequently offer poorer professional employment prospects.}
}
@Article{Meyer2006,
title = {The Strucplot Framework: Visualizing Multi-Way Contingency Tables with {vcd}},
author = {David Meyer and Achim Zeileis and Kurt Hornik},
journal = {Journal of Statistical Software},
year = {2006},
volume = {17},
number = {3},
pages = {1--48},
doi = {10.18637/jss.v017.i03},
}
@Article{Zeileis2007,
title = {Residual-based Shadings for Visualizing (Conditional) Independence},
author = {Achim Zeileis and David Meyer and Kurt Hornik},
journal = {Journal of Computational and Graphical Statistics},
year = {2007},
volume = {16},
number = {3},
pages = {507--525},
doi = {10.1198/106186007X237856},
}
@Book{Hadley2023,
title = {{R} for Data Science: Import, Tidy, Transform, Visualize, and Model Data},
author = {Hadley Wickham and Mine Çetinkaya-Rundel and Garrett Grolemund},
publisher = {O'Reilly Media, Inc.},
address = {Sebastopol, California},
year = {2023},
edition = {2nd},
note = {ISBN 978-1492097402},
url = {https://r4ds.hadley.nz/},
}
@Book{Kabacoff2022,
title = {{R} in Action: Data Analysis and graphics with {R} and {Tidyverse}},
author = {Robert I. Kabacoff},
publisher = {Manning Publications Co.},
address = {Shelter Island, NY},
year = {2022},
edition = {3rd},
note = {ISBN 978-1617296055},
}
@Book{Pinheiro2000,
title = {Mixed-Effects Models in {S} and {S-PLUS}},
author = {Pinheiro, Jos{\'e}C. and Bates, Douglas M.},
year = {2000},
publisher = {Springer-Verlag},
address = {New York, NY},
}
@Book{Demidenko2013,
title = {Mixed Models: Theory and Applications with {R}},
author = {Eugene Demidenko},
publisher = {John Wiley \& Sons},
address = {Hoboken, New Jersey},
year = {2013},
edition = {2nd},
note = {ISBN 978-1-118-09157-9},
doi = {10.1002/9781118651537},
}
@Book{Andrzej2013,
doi = {10.1007/978-1-4614-3900-4},
note = {ISBN 978-1-4614-3899-1},
year = {2013},
publisher = {Springer New York},
address = {New York, NY},
edition = {1st},
author = {Andrzej Gałecki and Tomasz Burzykowski},
title = {Linear Mixed-Effects Models Using {R}: A Step-by-Step Approach}
}
@Book{Jiang2021,
doi = {10.1007/978-1-0716-1282-8},
note = {ISBN 978-1-0716-1282-8},
year = {2021},
publisher = {Springer New York},
address = {New York, NY},
edition = {2nd},
author = {Jiming Jiang and Thuan Nguyen},
title = {Linear and Generalized Linear Mixed Models and Their Applications}
}
@Book{msg2021,
title = {现代统计图形},
author = {赵鹏 and 谢益辉 and 黄湘云},
publisher = {人民邮电出版社},
address = {北京},
year = {2021},
note = {ISBN 978-7-115-56690-4},
url = {https://bookdown.org/xiangyun/msg},
}
@Book{wen2020,
title = {最优化:建模、算法与理论},
author = {刘浩洋 and 户将 and 李勇锋 and 文再文},
publisher = {高等教育出版社},
address = {北京},
year = {2020},
note = {ISBN 978-7-040-55035-1},
url = {http://faculty.bicmr.pku.edu.cn/~wenzw/optbook.html},
}
@Book{Friendly2016,
title = {Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data},
author = {Michael Friendly and David Meyer},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2016},
edition = {1st},
note = {ISBN 978-1498725835},
}
@Book{Agresti2007,
title = {An Introduction to Categorical Data Analysis},
author = {Alan Agresti},
publisher = {John Wiley \& Sons, Inc.},
address = {Hoboken, New Jersey},
year = {2007},
edition = {2nd},
note = {ISBN 978-0-471-22618-5},
}
@Book{Agresti2013,
title = {Categorical Data Analysis},
author = {Alan Agresti},
publisher = {John Wiley \& Sons, Inc.},
address = {Hoboken, New Jersey},
year = {2013},
edition = {3rd},
note = {ISBN 978-0-470-46363-5},
}
@Book{Morten2017,
title = {Statistical Analysis of Contingency Tables},
author = {Morten W. Fagerland, Stian Lydersen, Petter Laake},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2017},
edition = {1st},
note = {ISBN 978-1466588172},
doi = {https://contingencytables.com/},
}
@Book{Dobson1983,
title = {An Introduction to Statistical Modelling},
author = {Annette J. Dobson},
publisher = {Chapman and Hall/CRC},
address = {London},
year = {1983},
edition = {1st},
note = {ISBN 978-0412248603},
doi = {10.1007/978-1-4899-3174-0},
}
@Book{Barry2015,
title = {Pareto Distributions},
author = {Barry C. Arnold},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2015},
edition = {2nd},
note = {ISBN 978-1-4665-8485-3},
}
@Book{Marron2022,
title = {Object Oriented Data Analysis},
author = {J. S. Marron and Ian L. Dryden},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2022},
edition = {1st},
note = {ISBN 978-0-8153-9282-8},
}
@Book{Richard2022,
title = {Computational Statistics with R},
author = {Niels Richard Hansen},
year = {2022},
url = {https://cswr.nrhstat.org/},
}
@Book{Chacon2018,
title = {Multivariate Kernel Smoothing and Its Applications},
author = {Jos{\'e}. Chac{\'o}n, Tarn Duong},
year = {2018},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
isbn = {9781498763011},
url = {https://www.mvstat.net/mvksa/},
}
@Book{KernSmooth1995,
title = {Kernel Smoothing},
author = {M. P. Wand and M. C. Jones},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {1995},
edition = {1st},
note = {ISBN 978-0412552700},
url = {http://matt-wand.utsacademics.info/webWJbook/},
}
@Book{Coene2021,
title = {JavaScript for R},
author = {John Coene},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2021},
note = {ISBN 978-0367680633},
url = {https://book.javascript-for-r.com/},
}
@Book{Cressie1993,
title = {Statistics for Spatial Data},
author = {Noel A. C. Cressiee},
publisher = {John Wiley \& Sons, Inc},
year = {1993},
edition = {Revised Edition},
note = {ISBN 978-0471-00255-0},
}
@Book{Diggle2013,
title = {Statistical Analysis of Spatial and Spatio-Temporal Point Patterns},
year = {2013},
author = {Peter J. Diggle},
edition = {3rd},
address = {Boca Raton, Florida},
publisher = {Chapman and Hall/CRC},
}
@Article{Rue2009,
author = {H{\aa}vard Rue and Sara Martino and Nicholas Chopin},
title = {Approximate {Bayesian} Inference for Latent {Gaussian} Models Using Integrated Nested {Laplace} Approximations (with discussion)},
journal = {Journal of the Royal Statistical Society, Series B},
year = {2009},
volume = {71},
number = {2},
pages = {319--392},
}
@Article{Lindgren2015,
title = {Bayesian Spatial Modelling with {R-INLA}},
author = {Finn Lindgren and H{\aa}vard Rue},
journal = {Journal of Statistical Software},
year = {2015},
volume = {63},
number = {19},
pages = {1--25},
}
@Article{Virgilio2018,
author = {G{\'o}mez-Rubio, Virgilio and Rue, H{\aa}vard},
title = {Markov chain Monte Carlo with the Integrated Nested Laplace Approximation},
journal = {Statistics and Computing},
year = {2018},
volume = {28},
number = {5},
pages = {1033--1051},
}
@Article{Anderson2022,
title = {{sdmTMB}: an R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields},
author = {{Anderson} and Sean C. and {Ward} and Eric J. and {English} and Philina A. and {Barnett} and Lewis A.K.},
journal = {bioRxiv},
year = {2022},
volume = {2022.03.24.485545},
doi = {10.1101/2022.03.24.485545},
url = {https://doi.org/10.1101/2022.03.24.485545},
}
@Book{Diggle2007,
title = {Model-based Geostatistics},
author = {Peter J. Diggle and Paulo J. {Ribeiro Jr.}},
year = {2007},
publisher = {Springer-Verlag},
address = {New York, NY},
doi = {10.1007%2F978-0-387-48536-2},
}
@Book{Bivand2013,
author = {Roger S. Bivand and Edzer Pebesma and Virgilio Gomez-Rubio},
title = {Applied spatial data analysis with {R}},
year = {2013},
edition = {2nd},
publisher = {Springer, NY},
url = {https://asdar-book.org/},
}
@Book{Baddeley2015,
title = {Spatial Point Patterns: Methodology and Applications with {R}},
author = {Adrian Baddeley and Ege Rubak and Rolf Turner},
year = {2015},
publisher = {Chapman and Hall/CRC Press},
address = {London},
url = {https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/},
}
@Article{Pebesma2018,
author = {Edzer Pebesma},
title = {Simple Features for {R}: Standardized Support for Spatial Vector Data},
year = {2018},
journal = {{The R Journal}},
doi = {10.32614/RJ-2018-009},
url = {https://doi.org/10.32614/RJ-2018-009},
pages = {439--446},
volume = {10},
number = {1},
}
@Article{Pebesma2005,
author = {Edzer J. Pebesma and Roger S. Bivand},
title = {Classes and methods for spatial data in {R}},
journal = {R News},
year = {2005},
volume = {5},
number = {2},
pages = {9--13},
month = {November},
url = {https://CRAN.R-project.org/doc/Rnews/},
}
@Article{Pebesma2004,
title = {Multivariable geostatistics in {S}: the {gstat} package},
author = {Edzer J. Pebesma},
journal = {Computers & Geosciences},
year = {2004},
volume = {30},
pages = {683-691},
}
@Article{Benedikt2016,
title = {Spatio-Temporal Interpolation using {gstat}},
author = {Benedikt Gräler and Edzer Pebesma and Gerard Heuvelink},
year = {2016},
journal = {The R Journal},
volume = {8},
issue = {1},
pages = {204-218},
url = {https://journal.r-project.org/archive/2016/RJ-2016-014/index.html},
}
@Article{Christensen2002,
title = {{geoRglm}: A package for generalised linear spatial models},
author = {O.F. Christensen and P.J. {Ribeiro Jr.}},
journal = {R News},
year = {2002},
volume = {2},
number = {2},
pages = {26-28},
}
@Article{PrevMap2017,
title = {{PrevMap}: An {R} Package for Prevalence Mapping},
author = {Emanuele Giorgi and Peter J. Diggle},
journal = {Journal of Statistical Software},
year = {2017},
volume = {78},
number = {8},
pages = {1--29},
}
@Article{Baddeley2005,
title = {{spatstat}: An {R} Package for Analyzing Spatial Point Patterns},
author = {Adrian Baddeley and Rolf Turner},
journal = {Journal of Statistical Software},
year = {2005},
volume = {12},
number = {6},
pages = {1--42},
doi = {10.18637/jss.v012.i06},
}
@article{glmmfields2018,
doi = {10.1002/ecy.2403},
year = {2018},
month = nov,
publisher = {Wiley},
volume = {100},
number = {1},
author = {Sean C. Anderson and Eric J. Ward},
title = {Black swans in space: modeling spatio-temporal processes with extremes}
}
@Article{Ronnegard2010,
title = {{hglm}: A Package for Fitting Hierarchical Generalized Linear Models},
author = {Lars Ronnegard and Xia Shen and Moudud Alam},
journal = {The R Journal},
year = {2010},
volume = {2},
number = {2},
pages = {20-28},
url = {https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf},
}
@Article{Alam2015,
title = {Fitting Conditional and Simultaneous Autoregressive Spatial Models in {hglm}},
author = {Moudud Alam and Lars Ronnegard and Xia Shen},
journal = {The R Journal},
year = {2015},
volume = {7},
number = {2},
pages = {5-18},
url = {https://journal.r-project.org/archive/2015/RJ-2015-017/RJ-2015-017.pdf},
}
@Article{spacetime2012,
title = {{spacetime}: Spatio-Temporal Data in {R}},
author = {Edzer Pebesma},
journal = {Journal of Statistical Software},
year = {2012},
volume = {51},
number = {7},
pages = {1--30},
url = {https://www.jstatsoft.org/v51/i07/},
}
@Article{Ripley1987,
title = {Problems with likelihood estimation of covariance functions of spatial gaussian processes},
author = {J. J. Warnes and B. D. Ripley},
journal = {Biometrika},
year = {1987},
volume = {74},
number = {3},
pages = {640-642},
}
@article{Diggle1998,
author = {Diggle, P. J. and Tawn, J. A. and Moyeed, R. A.},
title = {Model-based geostatistics},
journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)},
year = {1998},
volume = {47},
number = {3},
pages = {299-350},
keywords = {Generalized linear mixed model, Geostatistics, Kriging, Markov chain Monte Carlo method, Spatial prediction},
doi = {10.1111/1467-9876.00113},
abstract = {Conventional geostatistical methodology solves the problem of predicting the realized value of a linear functional of a Gaussian spatial stochastic process S(x) based on observations Yi = S(xi) + Zi at sampling locations xi, where the Zi are mutually independent, zero-mean Gaussian random variables. We describe two spatial applications for which Gaussian distributional assumptions are clearly inappropriate. The first concerns the assessment of residual contamination from nuclear weapons testing on a South Pacific island, in which the sampling method generates spatially indexed Poisson counts conditional on an unobserved spatially varying intensity of radioactivity; we conclude that a conventional geostatistical analysis oversmooths the data and underestimates the spatial extremes of the intensity. The second application provides a description of spatial variation in the risk of campylobacter infections relative to other enteric infections in part of north Lancashire and south Cumbria. For this application, we treat the data as binomial counts at unit postcode locations, conditionally on an unobserved relative risk surface which we estimate. The theoretical framework for our extension of geostatistical methods is that, conditionally on the unobserved process S(x), observations at sample locations xi form a generalized linear model with the corresponding values of S(xi) appearing as an offset term in the linear predictor. We use a Bayesian inferential framework, implemented via the Markov chain Monte Carlo method, to solve the prediction problem for non-linear functionals of S(x), making a proper allowance for the uncertainty in the estimation of any model parameters.},
}
@article{Christensen2004,
author = {Ole F Christensen},
title = {Monte Carlo Maximum Likelihood in Model-Based Geostatistics},
journal = {Journal of Computational and Graphical Statistics},
volume = {13},
number = {3},
pages = {702-718},
year = {2004},
doi = {10.1198/106186004X2525},
}
@article{Christensen2006,
author = {Ole F Christensen and Gareth O. Roberts and Martin Sk{\"o}ld},
title = {Robust Markov Chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models},
journal = {Journal of Computational and Graphical Statistics},
abstract = {Using Markov chain Monte Carlo methods for statistical inference is often troublesome in practice, because performance of the algorithm may hugely depend on the observed data, and what works well for one dataset may fail miserably for another. In this article, for spatial generalized linear mixed models (GLMMs), we discuss problems with algorithms previously used, and we construct an algorithm with robust mixing and convergence characteristics, independent of the data. The strategy we have used for this construction is not model specific and could be applied in a much wider context.},
volume = {15},
number = {1},
pages = {1-17},
year = {2006},
url = {http://www.jstor.org/stable/27594162},
}
@article{Wagner2015,
author = {Wagner Hugo Bonat and Paulo Justiniano Ribeiro Jr},
title = {Practical likelihood analysis for spatial generalized linear mixed models},
journal = {Electronic Journal of Statistics},
volume = {10},
number = {2},
pages = {3986-4009},
year = {2015},
doi = {10.1002/env.2375},
}
@article{Erlis2016,
author = {Erlis Ruli and Nicola Sartori and Laura Ventura},
title = {Improved Laplace approximation for marginal likelihoods},
journal = {Electronic Journal of Statistics},
volume = {10},
number = {2},
pages = {3986-4009},
year = {2016},
doi = {10.1214/16-EJS1218},
}
@Article{misc3d2008,
title = {Computing and Displaying Isosurfaces in {R}},
author = {Dai Feng and Luke Tierney},
journal = {Journal of Statistical Software},
year = {2008},
volume = {28},
number = {1},
doi = {10.18637/jss.v028.i01},
}
@Article{Anscombe1973,
doi = {10.2307/2682899},
year = {1973},
volume = {27},
number = {1},
pages = {17},
author = {F. J. Anscombe},
title = {Graphs in Statistical Analysis},
journal = {The American Statistician}
}
@Article{Galton1886,
year = {1886},
volume = {15},
pages = {246-263},
author = {Galton, F.},
title = {Regression Towards Mediocrity in Hereditary Stature},
journal = {Journal of the Anthropological Institute},
}
@Article{Hanley2004,
year = {2004},
volume = {58},
number = {3},
pages = {237-243},
month = aug,
author = {James A. Hanley},
title = {'Transmuting' women into men: Galton's family data on human stature},
journal = {The American Statistician},
}
@Unpublished{Hadley2011,
year = {2011},
month = Nov,
author = {Hadley Wickham and Lisa Stryjewski},
title = {40 years of boxplots},
url = {https://vita.had.co.nz/papers/boxplots.pdf},
}
@Article{Tukey1978,
URL = {https://www.jstor.org/stable/2683468},
author = {McGill, R., Tukey, J. W. and Larsen, W. A.},
journal = {The American Statistician},
number = {1},
pages = {12-16},
title = {Variations of box plots},
volume = {32},
year = {1978},
}
@Article{ggsignif2021,
title = {{ggsignif}: R Package for Displaying Significance Brackets for {ggplot2}},
author = {Ahlmann-Eltze Constantin and Indrajeet Patil},
year = {2021},
journal = {PsyArxiv},
url = {https://psyarxiv.com/7awm6},
doi = {10.31234/osf.io/7awm6},
}
@Article{Indrajeet2021,
doi = {10.21105/joss.03167},
url = {https://doi.org/10.21105/joss.03167},
year = {2021},
publisher = {{The Open Journal}},
volume = {6},
number = {61},
pages = {3167},
author = {Indrajeet Patil},
title = {{Visualizations with statistical details: The {ggstatsplot} approach}},
journal = {{Journal of Open Source Software}},
}
@Article{Bai2009,
author = {H. Bai and L. Wang and W. Pan and M. Frey},
journal = {Journal of Instructional Psychology},
number = {3},
pages = {185-193},
title = {Measuring mathematics anxiety: Psychometric analysis of a bidimensional affective scale},
volume = {36},
year = {2009},
}
@Article{Blyth1960,
URL = {https://www.jstor.org/stable/2333308},
author = {Colin R. Blyth and David W. Hutchinson},
journal = {Biometrika},
number = {3/4},
pages = {381--391},
title = {Table of Neyman-Shortest Unbiased Confidence Intervals for the Binomial Parameter},
volume = {47},
year = {1960},
}
@Article{Clopper1934,
author = {Clopper, C. J. and Pearson, E. S.},
title = {The Use of Confidence or Fiducial Limits Illustrated In The Case of The Binomial},
journal = {Biometrika},
volume = {26},
number = {4},
pages = {404-413},
year = {1934},
month = {12},
doi = {10.1093/biomet/26.4.404},
}
@Article{Lawrence2001,
title = {Interval Estimation for a Binomial Proportion},
author = {Lawrence D. Brown and T. Tony Cai and Anirban DasGupta},
journal = {Statistical Science},
year = {2001},
volumne = {16},
number = {2},
pages = {101--133},
url = {https://projecteuclid.org/euclid.ss/1009213286},
}
@Article{Geyer2005,
author = {Geyer, Charles J. and Meeden, Glen D.},
url = {https://www.jstor.org/stable/20061193},
journal = {Statistical Science},
month = {11},
number = {4},
pages = {358--366},
title = {Fuzzy and Randomized Confidence Intervals and P-Values},
volume = {20},
year = {2005}
}
@Article{Wilson1927,
author = {Wilson, Edwin B.},
title = {Probable inference, the law of succession, and statistical inference},
journal = {Journal of the American Statistical Association},
volume = {22},
number = {158},
pages = {209-212},
year = {1927},
month = {6},
doi = {10.1080/01621459.1927.10502953},
}
@article{Fournier2012,
author = {David A. Fournier and Hans J. Skaug and Johnoel Ancheta and James Ianelli and Arni Magnusson and Mark N. Maunder and Anders Nielsen and John Sibert},
title = {AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models},
journal = {Optimization Methods and Software},
volume = {27},
number = {2},
pages = {233-249},
year = {2012},
doi = {10.1080/10556788.2011.597854},
}
@article{Gelman2015,
author = {Andrew Gelman and Daniel Lee and Jiqiang Guo},
title = {Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization},
journal = {Journal of Educational and Behavioral Statistics},
volume = {40},
number = {5},
pages = {530-543},
year = {2015},
doi = {10.3102/1076998615606113},
URL = {https://doi.org/10.3102/1076998615606113},
abstract = {Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users’ and developers’ perspectives and illustrate with a simple but nontrivial nonlinear regression example.},
}
@article{Hoffman2014,
author = {Matthew D. Hoffman and Andrew Gelman},
title = {The {No-U-Turn} Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo},
journal = {Journal of Machine Learning Research},
year = {2014},
volume = {15},
number = {1},
pages = {1593-1623},
}
@article{Monnahan2018,
author = {Monnahan, Cole C. and Kristensen, Kasper},
journal = {PLOS ONE},
title = {{No-U-turn} sampling for fast Bayesian inference in {ADMB} and {TMB}: Introducing the {adnuts} and {tmbstan} {R} packages},
year = {2018},
volume = {13},
pages = {1-10},
number = {5},
}
@Inproceedings{Kucukelbir2015,
author = {Kucukelbir, Alp and Ranganath, Rajesh and Gelman, Andrew and Blei, David M.},
title = {Automatic Variational Inference in Stan},
year = {2015},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1},
pages = {568–576},
numpages = {9},
location = {Montreal, Canada},
series = {NIPS'15},
}
@article{Carpenter2017,
author = {Bob Carpenter and Andrew Gelman and Matthew Hoffman and Daniel Lee and Ben Goodrich and Michael Betancourt and Marcus Brubaker and Jiqiang Guo and Peter Li and Allen Riddell},
title = {{Stan}: A Probabilistic Programming Language},
journal = {Journal of Statistical Software},
volume = {76},
number = {1},
year = {2017},
issn = {1548-7660},
pages = {1--32},
doi = {10.18637/jss.v076.i01},
url = {https://www.jstatsoft.org/v076/i01}
}
@Article{Gabry2019,
title = {Visualization in Bayesian workflow},
author = {Jonah Gabry and Daniel Simpson and Aki Vehtari and Michael Betancourt and Andrew Gelman},
year = {2019},
journal = {Journal of the Royal Statistical Society Series A: Statistics in Society},
volume = {182},
issue = {2},
pages = {389-402},
doi = {10.1111/rssa.12378},
}
@misc{Gelman2020,
title = {Bayesian Workflow},
author = {Andrew Gelman and Aki Vehtari and Daniel Simpson and Charles C. Margossian and Bob Carpenter and Yuling Yao and Lauren Kennedy and Jonah Gabry and Paul-Christian Bürkner and Martin Modrák},
year = {2020},
eprint = {2011.01808},
archivePrefix = {arXiv},
primaryClass = {stat.ME}
}
@misc{Carpenter2015,
title = {The Stan Math Library: Reverse-Mode Automatic Differentiation in C++},
author = {Bob Carpenter and Matthew D. Hoffman and Marcus Brubaker and Daniel Lee and Peter Li and Michael Betancourt},
year = {2015},
eprint = {1509.07164},
archivePrefix = {arXiv},
primaryClass = {cs.MS},
url = {https://arxiv.org/abs/1509.07164},
}
@misc{Dillon2017,
title = {{TensorFlow} Distributions},
author = {Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, Rif A. Saurous},
year = {2017},
eprint = {1711.10604},
archivePrefix = {arXiv},
primaryClass = {cs.LG},
url = {https://arxiv.org/abs/1711.10604},
}
@Article{Rcpp2011,
title = {{Rcpp}: Seamless {R} and {C++} Integration},
author = {Dirk Eddelbuettel and Romain Fran\c{c}ois},
journal = {Journal of Statistical Software},
year = {2011},
volume = {40},
number = {8},
pages = {1--18},
doi = {10.18637/jss.v040.i08},
}
@Article{Rcpp2018,
title = {{Extending {R} with {C++}: A Brief Introduction to {Rcpp}}},
author = {Dirk Eddelbuettel and James Joseph Balamuta},
journal = {The American Statistician},
year = {2018},
volume = {72},
number = {1},
pages = {28-36},
doi = {10.1080/00031305.2017.1375990},
}
@Article{Bates2013,
title = {Fast and Elegant Numerical Linear Algebra Using the {RcppEigen} Package},
author = {Douglas Bates and Dirk Eddelbuettel},
journal = {Journal of Statistical Software},
year = {2013},
volume = {52},
number = {5},
pages = {1--24},
doi = {10.18637/jss.v052.i05},
}
@Article{pymc2023,
title = {{PyMC}: a modern, and comprehensive probabilistic programming framework in Python},
author = {Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann CC, Martin OA, Osthege M, Vieira R, Wiecki T, Zinkov R},
journal = {PeerJ Computer Science},
year = {2023},
volume = {9},
number = {e1516},
doi = {10.7717/peerj-cs.1516},
url = {https://doi.org/10.7717/peerj-cs.1516},
}
@Article{workflowr2019,
title = {Creating and sharing reproducible research code the workflowr way [version 1; peer review: 3 approved]},
author = {John D Blischak and Peter Carbonetto and Matthew Stephens},
journal = {F1000Research},
year = {2019},
volume = {8},
number = {1749},
doi = {10.12688/f1000research.20843.1},
url = {https://doi.org/10.12688/f1000research.20843.1},
}
@article{Rocker2020,
author = {Daniel Nüst and Dirk Eddelbuettel and Dom Bennett and
Robrecht Cannoodt and Dav Clark and Gergely Daróczi and
Mark Edmondson and Colin Fay and Ellis Hughes and Lars
Kjeldgaard and Sean Lopp and Ben Marwick and Heather Nolis
and Jacqueline Nolis and Hong Ooi and Karthik Ram and Noam
Ross and Lori Shepherd and Péter Sólymos and Tyson Lee
Swetnam and Nitesh Turaga and Charlotte Van Petegem and
Jason Williams and Craig Willis and Nan Xiao},
title = {{The Rockerverse: Packages and Applications for Containerisation with R}},
year = {2020},
journal = {{The R Journal}},
doi = {10.32614/RJ-2020-007},
url = {https://doi.org/10.32614/RJ-2020-007},
pages = {437--461},
volume = {12},
number = {1},
}
@Article{targets2021,
title = {The {targets} {R} package: a dynamic Make-like function-oriented pipeline toolkit for reproducibility and high-performance computing},
author = {William Michael Landau},
journal = {Journal of Open Source Software},
year = {2021},
volume = {6},
number = {57},
pages = {2959},
url = {https://doi.org/10.21105/joss.02959},
}
@article{Bhadra2019,
author = {Anindya Bhadra and Jyotishka Datta and Nicholas G. Polson and Brandon Willard},
title = {{Lasso Meets Horseshoe: A Survey}},
volume = {34},
journal = {Statistical Science},
number = {3},
publisher = {Institute of Mathematical Statistics},
pages = {405 -- 427},
keywords = {Global-local priors, horseshoe, horseshoe+, hyper-parameter tuning, Lasso, regression, regularization, Sparsity},
year = {2019},
doi = {10.1214/19-STS700},
}
@article{Piironen2017a,
author = {Juho Piironen and Aki Vehtari},
title = {Sparsity information and regularization in the horseshoe and other shrinkage priors},
volume = {11},
journal = {Electronic Journal of Statistics},
number = {2},
publisher = {Institute of Mathematical Statistics and Bernoulli Society},
pages = {5018 -- 5051},
keywords = {Bayesian inference, horseshoe prior, shrinkage priors, Sparse estimation},
year = {2017},
doi = {10.1214/17-EJS1337SI},
}
@Article{Piironen2017b,
title = {Comparison of {{Bayesian}} Predictive Methods for Model Selection},
author = {Juho Piironen and Aki Vehtari},
year = {2017},
journal = {Statistics and Computing},
volume = {27},
number = {3},
pages = {711--735},
doi = {10.1007/s11222-016-9649-y},
}
@Article{Piironen2020,
title = {Projective Inference in High-Dimensional Problems: {{Prediction}} and Feature Selection},
author = {Juho Piironen and Markus Paasiniemi and Aki Vehtari},
year = {2020},
journal = {Electronic Journal of Statistics},
volume = {14},
number = {1},
pages = {2155--2197},
doi = {10.1214/20-EJS1711},
}
@article{TMB2016,
title = {{TMB}: Automatic Differentiation and Laplace Approximation},
volume = {70},
doi = {10.18637/jss.v070.i05},
number = {5},
journal= {Journal of Statistical Software},
author = {Kristensen, Kasper and Nielsen, Anders and Berg, Casper W. and Skaug, Hans and Bell, Bradley M.},
year = {2016},
pages = {1–21},
}
@Article{Brooks2017,
author = {Mollie E. Brooks and Kasper Kristensen and Koen J. {van Benthem} and Arni Magnusson and Casper W. Berg and Anders Nielsen and Hans J. Skaug and Martin Maechler and Benjamin M. Bolker},
title = {{glmmTMB} Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling},
year = {2017},
journal = {The R Journal},
doi = {10.32614/RJ-2017-066},
pages = {378--400},
volume = {9},
number = {2},
}
@Article{Rousset2014,
title = {Testing environmental and genetic effects in the presence of spatial autocorrelation},
author = {François Rousset and Jean-Baptiste Ferdy},
journal = {Ecography},
year = {2014},
volume = {37},
number = {8},
pages = {781-790},
url = {https://dx.doi.org/10.1111/ecog.00566},
}
@Article{Bates2015,
title = {Fitting Linear Mixed-Effects Models Using {lme4}},
author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker},
journal = {Journal of Statistical Software},