-
Notifications
You must be signed in to change notification settings - Fork 0
/
QDA.py
47 lines (32 loc) · 1.62 KB
/
QDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn.discriminant_analysis as skl_da
plt.style.use('seaborn-white')
songs = pd.read_csv('training_data.csv', na_values='?', dtype={'ID': str}).dropna().reset_index()
#Randomly picking a number of rows dividing them into training and test set.
trainI = np.random.choice(songs.shape[0], size = 350, replace = False)
trainIndex = songs.index.isin(trainI)
train = songs.iloc[trainIndex] #Training set
test = songs.iloc[~trainIndex] #test set
model = skl_da.QuadraticDiscriminantAnalysis()
X_train = train[['acousticness', 'danceability', 'duration', 'energy', 'instrumentalness', 'key', 'liveness', 'loudness', 'mode', 'speechiness', 'tempo', 'time_signature', 'valence']]
Y_train = train['label']
X_test = test[['acousticness', 'danceability', 'duration', 'energy', 'instrumentalness', 'key', 'liveness', 'loudness', 'mode', 'speechiness', 'tempo', 'time_signature', 'valence']]
Y_test = test['label']
model.fit(X_train, Y_train)
print('model summary:')
print(model)
predict_prob = model.predict_proba(X_test)
print('The class order in the model:')
print(model.classes_)
predict_prob[0:5] # inspect the first 5 predictions
prediction = np.empty(len(X_test), dtype=object)
prediction = np.where(predict_prob[:,0]>=0.5, 'unlike', 'like')
print(prediction[0:5]) # Inspect the first 5 predicitons after labeling.
print(pd.crosstab(prediction, Y_test))
Y_new = np.empty(len(X_test), dtype=int)
Y_new = np.where(Y_test[:]==0, 'unlike', 'like')
print(np.mean(prediction == Y_new))
#print(prediction)
#print(Y_new)