-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathregression_tree.c
293 lines (254 loc) · 7.75 KB
/
regression_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// Use banknote.data with 4 features and 2 labels(binary)
#define N_FEATURES 4
#define MAX_LENGTH 2000
#define INF 1000000000
typedef struct BinaryRegressionTree
{
struct BinaryRegressionTree* left;
struct BinaryRegressionTree* right;
float value;
int split_label;
float split_threshold;
}BinaryRegressionTree;
BinaryRegressionTree* createBinaryRegressionTree() {
BinaryRegressionTree *tree = (BinaryRegressionTree*)malloc(sizeof(BinaryRegressionTree));
tree->left = NULL;
tree->right = NULL;
tree->value = 0.0;
tree->split_label = -1;
tree->split_threshold = 0.0;
return tree;
}
void destroyTree(BinaryRegressionTree* root) {
if (root == NULL) {
return;
}
destroyTree(root->left);
destroyTree(root->right);
free(root);
}
int isLeave(BinaryRegressionTree* tree) {
return (tree->left == NULL) || (tree->right == NULL);
}
BinaryRegressionTree* train_regression_tree(float** train_x, float* train_y, int n, int max_depth);
// shuffle
void random_shuffle(int * array, int len)
{
int * p = array, temp, pos;
for (int i = 1; i < len; ++i)
{
pos = rand() % i;
temp = *p;
*p++ = array[pos];
array[pos] = temp;
}
}
int main() {
int i, j, length = 0, num;
float x[MAX_LENGTH][N_FEATURES], x_shuffled[MAX_LENGTH][N_FEATURES];
float y[MAX_LENGTH], y_shuffled[MAX_LENGTH];
int seed[MAX_LENGTH];
// Load data from csv
FILE* in_file = fopen("dataset/banknote.csv", "r");
while (1) {
for (j = 0; j < N_FEATURES; j++) {
fscanf(in_file, "%f,", &x[length][j]);
}
num = fscanf(in_file, "%f\n", &y[length]);
if (num != 1) {
break;
}
length++;
}
fclose(in_file);
// K-fold divide data
for (i = 0; i < length; i++) {
seed[i] = i;
}
random_shuffle(seed, length);
for (i = 0; i < length; i++) {
for (j = 0; j < N_FEATURES; j++) {
x_shuffled[i][j] = x[seed[i]][j];
}
y_shuffled[i] = y[seed[i]];
}
int n_fold = 5;
float ratio = 1 / (float)n_fold;
int split_length = (int)(ratio * length);
// y_hat is the predicted label
float *y_hat = (float*)malloc(sizeof(float) * split_length);
// Copy the train dataset
float** train_x = (float**)malloc(sizeof(float*) * (length - split_length));
float* train_y = (float*)malloc(sizeof(float) * (length - split_length));
for (i = 0; i < length - split_length; i++) {
train_x[i] = (float*)malloc(sizeof(float*) * N_FEATURES);
}
for (i = split_length; i < length; i++) {
for (j = 0; j < N_FEATURES; j++) {
train_x[i - split_length][j] = x_shuffled[i][j];
}
train_y[i - split_length] = y_shuffled[i];
}
// Regression Trees
BinaryRegressionTree* root = \
train_regression_tree(train_x, train_y, length - split_length, 2);
BinaryRegressionTree* p;
for (i = 0; i < split_length; i++) {
p = root;
while (!isLeave(p)) {
if (x_shuffled[i][p->split_label] <= p->split_threshold) {
// Turn left
p = p->left;
}
else {
// Turn right
p = p->right;
}
}
y_hat[i] = p->value;
}
float mse = 0.0;
for (i = 0; i < split_length; i++) {
mse += (y_hat[i] - y_shuffled[i]) * (y_hat[i] - y_shuffled[i]);
}
mse /= (float)split_length;
printf("rmse = %.2f\n", sqrt(mse));
for (i = 0; i < length - split_length; i++) {
free(train_x[i]);
}
free(train_x);
free(train_y);
free(y_hat);
}
/*
* Function of training regression trees
*/
BinaryRegressionTree* train_regression_tree(float** train_x, float* train_y, int n, int max_depth) {
BinaryRegressionTree* root = createBinaryRegressionTree();
if (max_depth == 0) {
// Get to the leaf
float value = 0.0;
for (int i = 0; i < n; i++) {
value += train_y[i];
}
root->value = value;
return root;
}
float split_threshold = 0;
int split_label = -1;
float min_gini_label = INF;
int* d1 = (int*)malloc(sizeof(int) * n);
int* d2 = (int*)malloc(sizeof(int) * n);
float* gini = (float*)malloc(sizeof(float) * n);
int i, j, k, d1_length, d2_length;
float c1, c2;
float s, min_s_gini = INF;
int min_s_index;
float* min_gini = (float*)malloc(sizeof(float) * n);
// Go through all the features
for (i = 0; i < N_FEATURES; i++) {
// Go through all the node
for (j = 0; j < n; j++) {
s = train_y[j];
d1_length = 0;
d2_length = 0;
for (k = 0; k < n; k++) {
if (train_y[k] <= s) {
d1[d1_length++] = k;
}
else {
d2[d2_length++] = k;
}
}
// Calculate Gini
c1 = 0.0;
for (k = 0; k < d1_length; k++) {
c1 += train_y[d1[k]];
}
c1 = c1 / (float)d1_length;
c2 = 0.0;
for (k = 0; k < d2_length; k++) {
c2 += train_y[d2[k]];
}
c2 = c2 / (float)d2_length;
gini[j] = 0.0;
for (k = 0; k < d1_length; k++) {
gini[j] += (train_y[d1[k]] - c1) * (train_y[d1[k]] - c1);
}
for (k = 0; k < d2_length; k++) {
gini[j] += (train_y[d2[k]] - c2) * (train_y[d2[k]] - c2);
}
}
// Find min Gini
min_s_index = -1;
for (j = 0; j < n; j++) {
if (gini[j] < min_s_gini) {
min_s_gini = gini[j];
min_s_index = j;
}
}
s = train_y[min_s_index];
// Updata label and shreshold
if (min_s_gini < min_gini_label) {
min_gini_label = min_s_gini;
split_label = i;
split_threshold = s;
}
}
// Refactoring dataset
d1_length = 0;
d2_length = 0;
for (k = 0; k < n; k++) {
if (train_y[k] <= split_threshold) {
d1[d1_length++] = k;
}
else {
d2[d2_length++] = k;
}
}
float** d1_train_x = (float**)malloc(sizeof(float*) * d1_length);
float* d1_train_y = (float*)malloc(sizeof(float) * d1_length);
float** d2_train_x = (float**)malloc(sizeof(float*) * d2_length);
float* d2_train_y = (float*)malloc(sizeof(float) * d2_length);
for (i = 0; i < d1_length; i++) {
d1_train_x[i] = (float*)malloc(sizeof(float*) * N_FEATURES);
}
for (i = 0; i < d2_length; i++) {
d2_train_x[i] = (float*)malloc(sizeof(float*) * N_FEATURES);
}
for (i = 0; i < d1_length; i++) {
for (int j = 0; j < N_FEATURES; j++) {
d1_train_x[i][j] = train_x[d1[i]][j];
}
d1_train_y[i] = train_y[d1[i]];
}
for (i = 0; i < d2_length; i++) {
for (int j = 0; j < N_FEATURES; j++) {
d2_train_x[i][j] = train_x[d2[i]][j];
}
d2_train_y[i] = train_y[d2[i]];
}
root->split_label = split_label;
root->split_threshold = split_threshold;
root->left = train_regression_tree(d1_train_x, d1_train_y, d1_length, max_depth - 1);
root->right = train_regression_tree(d2_train_x, d2_train_y, d2_length, max_depth - 1);
// Free storage
for (i = 0; i < d1_length; i++) {
free(d1_train_x[i]);
}
for (i = 0; i < d2_length; i++) {
free(d2_train_x[i]);
}
free(d1_train_x);
free(d2_train_x);
free(d1_train_y);
free(d2_train_y);
free(d1);
free(d2);
free(gini);
free(min_gini);
return root;
}