-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmodel_init.py
218 lines (178 loc) · 8.19 KB
/
model_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange
from .xflux.src.flux.modules.layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding)
from .xflux.src.flux.model import FluxParams
def convert_to_dtype(block, dtype):
block.to(dtype)
return block
def double_blocks_init(model, params, dtype):
model.double_blocks = nn.ModuleList(
[
convert_to_dtype(
DoubleStreamBlock(
model.hidden_size,
model.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
),
dtype
)
for _ in range(params.depth)
]
)
def single_blocks_init(model, params, dtype):
model.single_blocks = nn.ModuleList(
[
convert_to_dtype(
SingleStreamBlock(model.hidden_size, model.num_heads, mlp_ratio=params.mlp_ratio),
dtype
)
for _ in range(params.depth_single_blocks)
]
)
model.final_layer = LastLayer(model.hidden_size, 1, model.out_channels)
model.final_layer.to(dtype)
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
_supports_gradient_checkpointing = True
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
def attn_processors(self):
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
block_controlnet_hidden_states=None,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
if block_controlnet_hidden_states is not None:
controlnet_depth = len(block_controlnet_hidden_states)
for index_block, block in enumerate(self.double_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
txt,
vec,
pe,
)
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
# controlnet residual
if block_controlnet_hidden_states is not None:
img = img + block_controlnet_hidden_states[index_block % 2]
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
vec,
pe,
)
else:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img