forked from MarvinTeichmann/KittiSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
122 lines (88 loc) · 3.49 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Trains, evaluates and saves the KittiSeg model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import logging
import os
import sys
import collections
# https://github.com/tensorflow/tensorflow/issues/2034#issuecomment-220820070
import numpy as np
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
sys.path.insert(1, 'incl')
import tensorvision.train as train
import tensorvision.analyze as ana
import tensorvision.utils as utils
from evaluation import kitti_test
flags.DEFINE_string('RUN', 'KittiSeg_pretrained',
'Modifier for model parameters.')
flags.DEFINE_string('hypes', 'hypes/KittiSeg.json',
'File storing model parameters.')
flags.DEFINE_string('name', None,
'Append a name Tag to run.')
flags.DEFINE_string('project', None,
'Append a name Tag to run.')
if 'TV_SAVE' in os.environ and os.environ['TV_SAVE']:
tf.app.flags.DEFINE_boolean(
'save', True, ('Whether to save the run. In case --nosave (default) '
'output will be saved to the folder TV_DIR_RUNS/debug, '
'hence it will get overwritten by further runs.'))
else:
tf.app.flags.DEFINE_boolean(
'save', True, ('Whether to save the run. In case --nosave (default) '
'output will be saved to the folder TV_DIR_RUNS/debug '
'hence it will get overwritten by further runs.'))
segmentation_weights_url = ("ftp://mi.eng.cam.ac.uk/"
"pub/mttt2/models/KittiSeg_pretrained.zip")
def maybe_download_and_extract(runs_dir):
logdir = os.path.join(runs_dir, FLAGS.RUN)
if os.path.exists(logdir):
# weights are downloaded. Nothing to do
return
if not FLAGS.RUN == 'KittiSeg_pretrained':
return
import zipfile
download_name = utils.download(segmentation_weights_url, runs_dir)
logging.info("Extracting KittiSeg_pretrained.zip")
zipfile.ZipFile(download_name, 'r').extractall(runs_dir)
return
def main(_):
utils.set_gpus_to_use()
try:
import tensorvision.train
import tensorflow_fcn.utils
except ImportError:
logging.error("Could not import the submodules.")
logging.error("Please execute:"
"'git submodule update --init --recursive'")
exit(1)
with open(tf.app.flags.FLAGS.hypes, 'r') as f:
logging.info("f: %s", f)
hypes = json.load(f)
utils.load_plugins()
if 'TV_DIR_RUNS' in os.environ:
runs_dir = os.path.join(os.environ['TV_DIR_RUNS'],
'KittiSeg')
else:
runs_dir = 'RUNS'
utils.set_dirs(hypes, tf.app.flags.FLAGS.hypes)
utils._add_paths_to_sys(hypes)
train.maybe_download_and_extract(hypes)
maybe_download_and_extract(runs_dir)
logging.info("Evaluating on Validation data.")
logdir = os.path.join(runs_dir, FLAGS.RUN)
# logging.info("Output images will be saved to {}".format)
ana.do_analyze(logdir)
logging.info("Creating output on test data.")
kitti_test.do_inference(logdir)
logging.info("Analysis for pretrained model complete.")
logging.info("For evaluating your own models I recommend using:"
"`tv-analyze --logdir /path/to/run`.")
logging.info("tv-analysis has a much cleaner interface.")
if __name__ == '__main__':
tf.app.run()