-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxPass_LogR.py
42 lines (32 loc) · 1.8 KB
/
xPass_LogR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
import math
trainX="train_inputs.txt"#training data file
trainY="train_pass_success.txt"#training data success/failure
testX="test_inputs.txt"#test data file
testY="test_pass_success.txt"#test data success/failure
savename="LogR_results.txt"
def calc_xP_LogR(trainX,trainY,testX,testY):#calculate expected passes from training and test input data
X_train = load_data_from_file(trainX) # get regression inputs
y_train = load_data_from_file(trainY) # Success or fail data
X_test = load_data_from_file(testX) # get regression inputs
y_test = load_data_from_file(testY) # Success or fail data
y_naive = np.empty(len(y_test))
y_naive.fill(np.mean(y_train))#Calculate naive xPass based on average pass completion rate
print "Naive data RMSE:",math.sqrt(mean_squared_error(y_test, y_naive))
xP_LogR = LogisticR(X_train, y_train, X_test)#xP calculated via logistic regression on training data set
print "RMSE using Logistic Regression:",math.sqrt(mean_squared_error(y_test, xP_LogR))
np.savetxt(savename, xP_LogR, delimiter=',') # save text file with results
def LogisticR(X, y, pred_data):#logistic regression function
clf = linear_model.LogisticRegression() # define logistic regression parameters
clf.fit(X, y) # run logistic regression model on training data set
y_pred = clf.predict_proba(pred_data)[:, 1]# Column 1 is probability of success
return y_pred
def load_data_from_file(file):#load data from file
#file is defined below
f = open(file, 'r')
data = np.genfromtxt(f, delimiter=',')#assumes delimiter is a comma
data = np.delete(data, 0, 0) # Erases the first row (i.e. the header)
f.close()
return data