Skip to content

Commit 23d17b6

Browse files
committed
pre-release models and logs for det and seg
1 parent cb7ae13 commit 23d17b6

28 files changed

+285
-76
lines changed

README.md

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -98,10 +98,12 @@ This project is released under the [Apache 2.0 license](LICENSE).
9898

9999
Our implementation is mainly based on the following codebases. We gratefully thank the authors for their wonderful works.
100100

101-
- [pytorch-image-models](https://github.com/rwightman/pytorch-image-models)
102-
- [PoolFormer](https://github.com/sail-sg/poolformer)
103-
- [MMDetection](https://github.com/open-mmlab/mmdetection)
104-
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation)
101+
- [pytorch-image-models](https://github.com/rwightman/pytorch-image-models).
102+
- [PoolFormer](https://github.com/sail-sg/poolformer): Official PyTorch implementation of MetaFormer.
103+
- [ConvNeXt](https://github.com/facebookresearch/ConvNeXt): Official PyTorch implementation of ConvNeXt.
104+
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab Detection Toolbox and Benchmark.
105+
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab Semantic Segmentation Toolbox and Benchmark.
106+
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab Pose Estimation Toolbox and Benchmark.
105107

106108
## Citation
107109

detection/README.md

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ For more details, see [Efficient Multi-order Gated Aggregation Network](https://
55

66
## Note
77

8-
Please note that we just simply follow the hyper-parameters of [PVT](https://github.com/whai362/PVT/tree/v2/detection) which may not be the optimal ones for MogaNet. Feel free to tune the hyper-parameters to get better performance.
8+
Please note that we simply follow the hyper-parameters of [PVT](https://github.com/whai362/PVT/tree/v2/detection) and [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), which may not be the optimal ones for MogaNet. Feel free to tune the hyper-parameters to get better performance.
99

1010
## Environement Setup
1111

@@ -47,19 +47,19 @@ Prepare COCO according to the guidelines in [MMDetection](https://github.com/ope
4747
## Results and models on COCO
4848

4949
| Method | Backbone | Pretrain | Params | FLOPs | Lr schd | Aug | box mAP | mask mAP | Config | Download |
50-
|:---:|:---:|:---:|---|---|:---:|:---:|:---:|:---:|:---:|:---:|
51-
| RetinaNet | MogaNet-XT | ImageNet-1K | 12.1M | 167.2G | 1x | No | 38.9 | - | [config](configs/mask_rcnn_moganet_xtiny_fpn_1x_coco.py) | log / model |
52-
| RetinaNet | MogaNet-T | ImageNet-1K | 14.4M | 173.4G | 1x | No | 40.9 | - | [config](configs/mask_rcnn_moganet_tiny_fpn_1x_coco.py) | log / model |
53-
| RetinaNet | MogaNet-S | ImageNet-1K | 35.1M | 253.0G | 1x | No | 45.4 | - | [config](configs/mask_rcnn_moganet_small_fpn_1x_coco.py) | log / model |
54-
| RetinaNet | MogaNet-B | ImageNet-1K | 53.5M | 354.5G | 1x | No | | - | [config](configs/mask_rcnn_moganet_base_fpn_1x_coco.py) | log / model |
55-
| RetinaNet | MogaNet-L | ImageNet-1K | 92.4M | 476.8G | 1x | No | | - | [config](configs/mask_rcnn_moganet_large_fpn_1x_coco.py) | log / model |
50+
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
51+
| RetinaNet | MogaNet-XT | ImageNet-1K | 12.1M | 167.2G | 1x | No | 39.7 | - | [config](configs/mask_rcnn_moganet_xtiny_fpn_1x_coco.py) | log / model |
52+
| RetinaNet | MogaNet-T | ImageNet-1K | 14.4M | 173.4G | 1x | No | 41.4 | - | [config](configs/mask_rcnn_moganet_tiny_fpn_1x_coco.py) | log / model |
53+
| RetinaNet | MogaNet-S | ImageNet-1K | 35.1M | 253.0G | 1x | No | 45.8 | - | [config](configs/mask_rcnn_moganet_small_fpn_1x_coco.py) | log / model |
54+
| RetinaNet | MogaNet-B | ImageNet-1K | 53.5M | 354.5G | 1x | No | 47.7 | - | [config](configs/mask_rcnn_moganet_base_fpn_1x_coco.py) | log / model |
55+
| RetinaNet | MogaNet-L | ImageNet-1K | 92.4M | 476.8G | 1x | No | 48.7 | - | [config](configs/mask_rcnn_moganet_large_fpn_1x_coco.py) | log / model |
5656
| Mask R-CNN | MogaNet-XT | ImageNet-1K | 22.8M | 185.4G | 1x | No | 40.7 | 37.6 | [config](configs/retinanet_moganet_xtiny_fpn_1x_coco.py) | log / model |
5757
| Mask R-CNN | MogaNet-T | ImageNet-1K | 25.0M | 191.7G | 1x | No | 42.6 | 39.1 | [config](configs/retinanet_moganet_tiny_fpn_1x_coco.py) | log / model |
58-
| Mask R-CNN | MogaNet-S | ImageNet-1K | 45.0M | 271.6G | 1x | No | 46.1 | 41.8 | [config](configs/retinanet_moganet_small_fpn_1x_coco.py) | log / model |
59-
| Mask R-CNN | MogaNet-B | ImageNet-1K | 63.4M | 373.1G | 1x | No | 48.2 | 43.4 | [config](configs/retinanet_moganet_base_fpn_1x_coco.py) | log / model |
60-
| Mask R-CNN | MogaNet-L | ImageNet-1K | 102.1M | 495.3G | 1x | No | | | [config](configs/retinanet_moganet_large_fpn_1x_coco.py) | log / model |
58+
| Mask R-CNN | MogaNet-S | ImageNet-1K | 45.0M | 271.6G | 1x | No | 46.6 | 42.2 | [config](configs/retinanet_moganet_small_fpn_1x_coco.py) | log / model |
59+
| Mask R-CNN | MogaNet-B | ImageNet-1K | 63.4M | 373.1G | 1x | No | 49.0 | 43.8 | [config](configs/retinanet_moganet_base_fpn_1x_coco.py) | log / model |
60+
| Mask R-CNN | MogaNet-L | ImageNet-1K | 102.1M | 495.3G | 1x | No | 49.4 | 44.2 | [config](configs/retinanet_moganet_large_fpn_1x_coco.py) | log / model |
6161

62-
**Notes**: All the models can also be downloaded by [**Baidu Cloud**](https://pan.baidu.com/s/1d5MTTC66gegehmfZvCQRUA?pwd=z8mf) (z8mf). The params (M) and FLOPs (G) are measured by [get_flops](get_flops.sh) with 1280 $\times$ 800 resolutions.
62+
**Notes**: All the models can also be downloaded by [**Baidu Cloud**](https://pan.baidu.com/s/1d5MTTC66gegehmfZvCQRUA?pwd=z8mf) (z8mf) at `MogaNet/COCO_Detection`. The params (M) and FLOPs (G) are measured by [get_flops](get_flops.sh) with 1280 $\times$ 800 resolutions.
6363
```bash
6464
bash get_flops.sh /path/to/config --shape 1280 800
6565
```
@@ -97,6 +97,7 @@ Our implementation is mainly based on the following codebases. We gratefully tha
9797

9898
- [MMDetection](https://github.com/open-mmlab/mmdetection)
9999
- [PVT detection](https://github.com/whai362/PVT/tree/v2/detection)
100+
- [ConvNeXt](https://github.com/facebookresearch/ConvNeXt)
100101
- [PoolFormer](https://github.com/sail-sg/poolformer)
101102

102103
<p align="right">(<a href="#top">back to top</a>)</p>

detection/configs/moganet/mask_rcnn_moganet_base_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_base_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_base_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -23,5 +23,11 @@
2323
out_channels=256,
2424
num_outs=5))
2525
# optimizer
26-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
26+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
27+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
28+
'scale': dict(decay_mult=0.),
29+
'norm': dict(decay_mult=0.)}))
2730
optimizer_config = dict(grad_clip=None)
31+
32+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
33+
evaluation = dict(save_best='auto')

detection/configs/moganet/mask_rcnn_moganet_large_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_large_sz224_8xbs64_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_large_sz224_8xbs64_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -23,5 +23,11 @@
2323
out_channels=256,
2424
num_outs=5))
2525
# optimizer
26-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
26+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
27+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
28+
'scale': dict(decay_mult=0.),
29+
'norm': dict(decay_mult=0.)}))
2730
optimizer_config = dict(grad_clip=None)
31+
32+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
33+
evaluation = dict(save_best='auto')

detection/configs/moganet/mask_rcnn_moganet_small_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_small_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_small_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -23,5 +23,11 @@
2323
out_channels=256,
2424
num_outs=5))
2525
# optimizer
26-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
26+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05,
27+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
28+
'scale': dict(decay_mult=0.),
29+
'norm': dict(decay_mult=0.)}))
2730
optimizer_config = dict(grad_clip=None)
31+
32+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
33+
evaluation = dict(save_best='auto')

detection/configs/moganet/mask_rcnn_moganet_tiny_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_tiny_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_tiny_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -23,5 +23,11 @@
2323
out_channels=256,
2424
num_outs=5))
2525
# optimizer
26-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
26+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05,
27+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
28+
'scale': dict(decay_mult=0.),
29+
'norm': dict(decay_mult=0.)}))
2730
optimizer_config = dict(grad_clip=None)
31+
32+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
33+
evaluation = dict(save_best='auto')

detection/configs/moganet/mask_rcnn_moganet_xtiny_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_xtiny_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_xtiny_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -23,5 +23,11 @@
2323
out_channels=256,
2424
num_outs=5))
2525
# optimizer
26-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
26+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05,
27+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
28+
'scale': dict(decay_mult=0.),
29+
'norm': dict(decay_mult=0.)}))
2730
optimizer_config = dict(grad_clip=None)
31+
32+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
33+
evaluation = dict(save_best='auto')

detection/configs/moganet/retinanet_moganet_base_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_base_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_base_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -25,5 +25,11 @@
2525
add_extra_convs='on_input',
2626
num_outs=5))
2727
# optimizer
28-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
28+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
29+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
30+
'scale': dict(decay_mult=0.),
31+
'norm': dict(decay_mult=0.)}))
2932
optimizer_config = dict(grad_clip=None)
33+
34+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
35+
evaluation = dict(save_best='auto')

detection/configs/moganet/retinanet_moganet_large_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_large_sz224_8xbs64_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_large_sz224_8xbs64_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -25,5 +25,11 @@
2525
add_extra_convs='on_input',
2626
num_outs=5))
2727
# optimizer
28-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
28+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
29+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
30+
'scale': dict(decay_mult=0.),
31+
'norm': dict(decay_mult=0.)}))
2932
optimizer_config = dict(grad_clip=None)
33+
34+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
35+
evaluation = dict(save_best='auto')

detection/configs/moganet/retinanet_moganet_small_fpn_1x_coco.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
init_cfg=dict(
1515
type='Pretrained',
1616
checkpoint=\
17-
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_small_sz224_8xbs128_ep300.pth.tar',
17+
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_small_sz224_8xbs128_ep300.pth.tar',
1818
),
1919
),
2020
neck=dict(
@@ -25,5 +25,11 @@
2525
add_extra_convs='on_input',
2626
num_outs=5))
2727
# optimizer
28-
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
28+
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
29+
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
30+
'scale': dict(decay_mult=0.),
31+
'norm': dict(decay_mult=0.)}))
2932
optimizer_config = dict(grad_clip=None)
33+
34+
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
35+
evaluation = dict(save_best='auto')

0 commit comments

Comments
 (0)