Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
WangYun1995 authored Aug 27, 2024
1 parent b070e06 commit 170a334
Showing 1 changed file with 228 additions and 0 deletions.
228 changes: 228 additions & 0 deletions Fisherinfor/load_statistics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
import numpy as np

#-------------------------------------------------------
def load_scale_pk_fiducial( root_path, nsims_fiducial, Imax ):
# initialize
statistic_fiducial = []

# Load the scalePKHF from fiducial
for i in range(nsims_fiducial):
peaks = np.load(root_path+'fiducial/peaks/'+str(i)+'/z=0/peaks.npz')
pkhf = np.ravel( peaks['scalePKHF'][0:Imax,:] )
statistic_fiducial.append( pkhf )

return np.asarray(statistic_fiducial)

#-------------------------------------------------------
def load_scale_vly_fiducial( root_path, nsims_fiducial, Imax ):
# initialize
statistic_fiducial = []

# Load the scalePKHF and scaleVLYDF from fiducial
for i in range(nsims_fiducial):
valleys = np.load(root_path+'fiducial/valleys/'+str(i)+'/z=0/valleys.npz')
vlydf = np.ravel( valleys['scaleVLYDF'][0:Imax,:] )
statistic_fiducial.append( vlydf )

return np.asarray(statistic_fiducial)

#-------------------------------------------------------
def load_scale_extrema_fiducial( root_path, nsims_fiducial, Imax ):
# initialize
statistic_fiducial = []

# Load the scalePKHF and scaleVLYDF from fiducial
for i in range(nsims_fiducial):
valleys = np.load(root_path+'fiducial/valleys/'+str(i)+'/z=0/valleys.npz')
peaks = np.load(root_path+'fiducial/peaks/'+str(i)+'/z=0/peaks.npz')

vlydf = np.ravel( valleys['scaleVLYDF'][0:Imax,:] )
pkhf = np.ravel( peaks['scalePKHF'][0:Imax,:] )
stat = np.concatenate((vlydf, pkhf))
statistic_fiducial.append( stat )


return np.asarray(statistic_fiducial)

#-------------------------------------------------------
def load_fps_fiducial( root_path, nsims_fiducial, kmax ):
# initialize
statistic_fiducial = []

# Load the scalePKHF and scaleVLYDF from fiducial
for i in range(nsims_fiducial):
fps = np.load(root_path+'fiducial/fps/'+str(i)+'/z=0/fps.npz')
if ( i == 0 ):
k = fps['k']
kk = k[k<kmax]

Pk = fps['Pk']
Pkk = Pk[0:len(kk)-1]
statistic_fiducial.append( Pkk )

return np.asarray(statistic_fiducial)

#-------------------------------------------------------
def load_all_fiducial( root_path, nsims_fiducial, Imax, kmax ):
# initialize
statistic_fiducial = []

# Load the scalePKHF and scaleVLYDF from fiducial
for i in range(nsims_fiducial):
valleys = np.load(root_path+'fiducial/valleys/'+str(i)+'/z=0/valleys.npz')
peaks = np.load(root_path+'fiducial/peaks/'+str(i)+'/z=0/peaks.npz')
fps = np.load(root_path+'fiducial/fps/'+str(i)+'/z=0/fps.npz')

if ( i == 0 ):
k = fps['k']
kk = k[k<kmax]

vlydf = np.ravel( valleys['scaleVLYDF'][0:Imax,:] )
pkhf = np.ravel( peaks['scalePKHF'][0:Imax,:] )
Pk = fps['Pk'][0:len(kk)-1]
stat = np.concatenate( (vlydf, pkhf, Pk) )
statistic_fiducial.append( stat )

return np.asarray(statistic_fiducial)

#-------------------------------------------------------
def load_scale_pk_derivatives(root_path, paras, nsims_derivatives, Imax):
# initialize
statistics = {} # dictionary
for para in paras:
statistics[para] = None

# Load the scaleVLYDF and scalePKHF from EQ, LS, OR_LSS, ...
for para in paras:
stat_p = []
stat_m = []
for i in range(nsims_derivatives):
peaks_p = np.load(root_path+para+'_p/peaks/'+str(i)+'/z=0/peaks.npz')
peaks_m = np.load(root_path+para+'_m/peaks/'+str(i)+'/z=0/peaks.npz')
pkhf_p = np.ravel( peaks_p['scalePKHF'][0:Imax,:] )
pkhf_m = np.ravel( peaks_m['scalePKHF'][0:Imax,:] )

stat_p.append( pkhf_p )
stat_m.append( pkhf_m )

statistics[para] = [stat_p, stat_m]

return statistics

#-------------------------------------------------------
def load_scale_vly_derivatives(root_path, paras, nsims_derivatives, Imax):
# initialize
statistics = {} # dictionary
for para in paras:
statistics[para] = None

# Load the scaleVLYDF and scalePKHF from EQ, LS, OR_LSS, ...
for para in paras:
stat_p = []
stat_m = []
for i in range(nsims_derivatives):
valleys_p = np.load(root_path+para+'_p/valleys/'+str(i)+'/z=0/valleys.npz')
valleys_m = np.load(root_path+para+'_m/valleys/'+str(i)+'/z=0/valleys.npz')
vlydf_p = np.ravel( valleys_p['scaleVLYDF'][0:Imax,:] )
vlydf_m = np.ravel( valleys_m['scaleVLYDF'][0:Imax,:] )


stat_p.append( vlydf_p )
stat_m.append( vlydf_m )

statistics[para] = [stat_p, stat_m]

return statistics

#-------------------------------------------------------
def load_scale_extrema_derivatives(root_path, paras, nsims_derivatives, Imax):
# initialize
statistics = {} # dictionary
for para in paras:
statistics[para] = None

# Load the scaleVLYDF and scalePKHF from EQ, LS, OR_LSS, ...
for para in paras:
stat_p = []
stat_m = []
for i in range(nsims_derivatives):
valleys_p = np.load(root_path+para+'_p/valleys/'+str(i)+'/z=0/valleys.npz')
peaks_p = np.load(root_path+para+'_p/peaks/'+str(i)+'/z=0/peaks.npz')
valleys_m = np.load(root_path+para+'_m/valleys/'+str(i)+'/z=0/valleys.npz')
peaks_m = np.load(root_path+para+'_m/peaks/'+str(i)+'/z=0/peaks.npz')

vlydf_p = np.ravel( valleys_p['scaleVLYDF'][0:Imax,:] )
pkhf_p = np.ravel( peaks_p['scalePKHF'][0:Imax,:] )
vlydf_m = np.ravel( valleys_m['scaleVLYDF'][0:Imax,:] )
pkhf_m = np.ravel( peaks_m['scalePKHF'][0:Imax,:] )

stat_p.append( np.concatenate((vlydf_p, pkhf_p)) )
stat_m.append( np.concatenate((vlydf_m, pkhf_m)) )

statistics[para] = [stat_p, stat_m]

return statistics

#-------------------------------------------------------
def load_fps_derivatives(root_path, paras, nsims_derivatives, kmax):
# initialize
statistics = {} # dictionary
for para in paras:
statistics[para] = None

# Load the scaleVLYDF and scalePKHF from EQ, LS, OR_LSS, ...
for para in paras:
stat_p = []
stat_m = []
for i in range(nsims_derivatives):
fps_p = np.load(root_path+para+'_p/fps/'+str(i)+'/z=0/fps.npz')
fps_m = np.load(root_path+para+'_m/fps/'+str(i)+'/z=0/fps.npz')
if ( i == 0 ):
k = fps_p['k']
kk = k[k<kmax]
Pk_p = fps_p['Pk'][0:len(kk)-1]
Pk_m = fps_m['Pk'][0:len(kk)-1]


stat_p.append( Pk_p )
stat_m.append( Pk_m )

statistics[para] = [stat_p, stat_m]

return statistics

#-------------------------------------------------------
def load_all_derivatives(root_path, paras, nsims_derivatives, Imax, kmax):
# initialize
statistics = {} # dictionary
for para in paras:
statistics[para] = None

# Load the scaleVLYDF and scalePKHF from EQ, LS, OR_LSS, ...
for para in paras:
stat_p = []
stat_m = []
for i in range(nsims_derivatives):
valleys_p = np.load(root_path+para+'_p/valleys/'+str(i)+'/z=0/valleys.npz')
peaks_p = np.load(root_path+para+'_p/peaks/'+str(i)+'/z=0/peaks.npz')
valleys_m = np.load(root_path+para+'_m/valleys/'+str(i)+'/z=0/valleys.npz')
peaks_m = np.load(root_path+para+'_m/peaks/'+str(i)+'/z=0/peaks.npz')
fps_p = np.load(root_path+para+'_p/fps/'+str(i)+'/z=0/fps.npz')
fps_m = np.load(root_path+para+'_m/fps/'+str(i)+'/z=0/fps.npz')
if ( i == 0 ):
k = fps_p['k']
kk = k[k<kmax]

vlydf_p = np.ravel( valleys_p['scaleVLYDF'][0:Imax,:] )
pkhf_p = np.ravel( peaks_p['scalePKHF'][0:Imax,:] )
vlydf_m = np.ravel( valleys_m['scaleVLYDF'][0:Imax,:] )
pkhf_m = np.ravel( peaks_m['scalePKHF'][0:Imax,:] )
Pk_p = fps_p['Pk'][0:len(kk)-1]
Pk_m = fps_m['Pk'][0:len(kk)-1]

stat_p.append( np.concatenate((vlydf_p, pkhf_p, Pk_p)) )
stat_m.append( np.concatenate((vlydf_m, pkhf_m, Pk_m)) )

statistics[para] = [stat_p, stat_m]

return statistics

0 comments on commit 170a334

Please sign in to comment.