Full collection of supported code snippets for the PyTorch and Fastai library. →
refers to pressing Tab
to trigger the snippet.
Trigger | Content |
---|---|
pytorch:imports→ |
insert the most common pytorch imports |
pytorch:metric→ |
custom metric function |
pytorch:loss_class→ |
selection of a classification loss function |
pytorch:loss_reg→ |
selection of a regression loss function |
pytorch:init→ |
creates an parameter initialization function and applies it to the neural net |
pytorch:optimizer→ |
selection of an optimizer |
pytorch:scheduler→ |
selection of a learning rate scheduler |
pytorch:sequential→ |
builds a sequential network |
pytorch:device→ |
check the available device (cpu/gpu) |
pytorch:module→ |
creates a pytorch module class |
pytorch:dataset |
Template for a custom pytorch dataset |
pytorch:function→ |
creates a pytorch function class |
pytorch:train→ |
creates a training loop |
pytorch:freeze→ |
freezes all layers of the model |
pytorch:unfreeze→ |
unfreeze all layers of the model |
pytorch:container→ |
stores modules or parameters in some kind of container |
pytorch:checkpoint→ |
load a model from local checkpoint or url |
pytorch:github→ |
load a model from a github repo |
pytorch:sampler→ |
select a sampler |
Trigger | Content |
---|---|
pytorch:layer:activation→ |
selection of a nonlinearity |
pytorch:layer:linear→ |
selection of a linear layer |
pytorch:layer:conv→ |
selection of a convolutional layer |
pytorch:layer:recurrent→ |
selection of a recurrent layer |
pytorch:layer:norm→ |
selection of a normalization layer |
pytorch:layer:sparse→ |
selection of an embedding layer |
pytorch:layer:pooling→ |
selection of a pooling layer |
pytorch:layer:padding→ |
selection of a padding layer |
pytorch:layer:dropout→ |
selection of a dropout layer |
pytorch:layer:vision→ |
selection of a vision layer |
pytorch:layer:distance→ |
selection of a distance layer |
pytorch:layer:resnet:block→ |
creates a Resnet BasicBlock |
pytorch:layer:resnet:bottleneck→ |
creates a Resnet BottleneckBlock |
Trigger | Content |
---|---|
pytorch:F:activation→ |
applies a nonlinearity function |
pytorch:F:linear→ |
applies a linear function |
pytorch:F:conv→ |
applies a convolutional function |
pytorch:F:norm→ |
applies a normalization function |
pytorch:F:sparse→ |
applies an embedding function |
pytorch:F:pooling→ |
applies a pooling function |
pytorch:F:dropout→ |
applies dropout |
pytorch:F:vision→ |
applies a vision function |
pytorch:F:loss→ |
applies a loss function |
pytorch:F:distance→ |
applies a distance function |