-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopen_images_downloader.py
236 lines (182 loc) · 10.9 KB
/
open_images_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import time
import boto3
from botocore import UNSIGNED
from botocore.config import Config
import botocore
import logging
from multiprocessing import Pool, Manager
import pandas as pd
import numpy as np
import os
import argparse
import sys
import functools
from urllib import request
from random import sample
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
def parse_args():
parser = argparse.ArgumentParser(description='Dowload open image dataset by class.')
parser.add_argument("--root", "--data", type=str, default="data", help="The root directory that you want to store the image data.")
parser.add_argument("--include-depiction", action="store_true", help="Do you want to include drawings or depictions?")
parser.add_argument("--class-names", type=str, help="Comma-separated list of classes you want to download.")
parser.add_argument("--num-workers", type=int, default=10, help="the number of worker threads used to download images.")
parser.add_argument("--retry", type=int, default=10, help="retry times when downloading.")
parser.add_argument('--remove-overlapped', action='store_true', help="Remove single boxes covered by group boxes.")
parser.add_argument('--max-images', type=int, default=-1, help='limit the total number of images downloaded across the whole dataset. The default is to use all available data.')
parser.add_argument('--max-annotations-per-class', type=int, default=-1, help='limit the number of bounding-box annotations per class. Each class will be able to have up to this many annotations. The default is to use all annotations per class.')
parser.add_argument('--stats-only', action='store_true', help='only list the number of images from the selected classes, and quit')
return parser.parse_args()
def download(bucket, root, retry, counter, lock, path):
i = 0
src = path
dest = f"{root}/{path}"
while i < retry:
try:
if not os.path.exists(dest):
s3.download_file(bucket, src, dest)
else:
logging.info(f"{dest} already exists.")
with lock:
counter.value += 1
if counter.value % 100 == 0:
logging.warning(f"Downloaded {counter.value} images.")
return
except botocore.exceptions.ClientError as e:
if e.response['Error']['Code'] == "404":
logging.warning(f"The file s3://{bucket}/{src} does not exist.")
return
i += 1
logging.warning(f"Sleep {i} and try again.")
time.sleep(i)
logging.warning(f"Failed to download the file s3://{bucket}/{src}. Exception: {e}")
def batch_download(bucket, file_paths, root, num_workers=10, retry=10):
with Pool(num_workers) as p:
m = Manager()
counter = m.Value('i', 0)
lock = m.Lock()
download_ = functools.partial(download, bucket, root, retry, counter, lock)
p.map(download_, file_paths)
def http_download(url, path):
with request.urlopen(url) as f:
with open(path, "wb") as fout:
buf = f.read(1024)
while buf:
fout.write(buf)
buf = f.read(1024)
def log_counts(values):
for k, count in values.value_counts().iteritems():
print(" {:s}: {:d}/{:d} = {:.2f}".format(k, count, len(values), count/len(values)))
def get_totals(dataset_types, images, annotations):
total_images = sum([len(images[d]) for d in dataset_types])
total_annotations = sum([len(annotations[d]) for d in dataset_types])
return total_images, total_annotations
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.WARNING,
format='%(asctime)s - %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
args = parse_args()
bucket = "open-images-dataset"
# split the --class_names argument into an array
class_names = [e.strip() for e in args.class_names.split(",")]
num_classes = len(class_names)
# make sure the output dir exists
if not os.path.exists(args.root):
os.makedirs(args.root)
# download the class description list
class_description_file = os.path.join(args.root, "class-descriptions-boxable.csv")
if not os.path.isfile(class_description_file):
url = "https://storage.googleapis.com/openimages/2018_04/class-descriptions-boxable.csv"
logging.warning(f"Download {url}.")
http_download(url, class_description_file)
# load the class descriptions and filter by the requested classes
class_descriptions = pd.read_csv(class_description_file, names=["id", "ClassName"])
class_descriptions = class_descriptions[class_descriptions['ClassName'].str.lower().isin([x.lower() for x in class_names])]
# verify that all the requested classes were found
logging.warning(f"Requested {num_classes} classes, found {len(class_descriptions)} classes")
if num_classes != len(class_descriptions):
missing_classes = []
for class_name in class_names:
if len(class_descriptions[class_descriptions['ClassName']==class_name]) == 0:
logging.warning(f"Couldn't find class '{class_name}'")
missing_classes.append(class_name)
raise Exception("Couldn't find classes '{:s}' in the Open Images dataset. Please confirm that the --class_names argument contains valid classes.".format(','.join(missing_classes)))
# download and parse the annotations
dataset_types = ["train", "validation", "test"]
annotations = {}
images = {}
for dataset_type in dataset_types:
# create subdirectory for this set
image_dir = os.path.join(args.root, dataset_type)
os.makedirs(image_dir, exist_ok=True)
# download the annotations for train/val/test
annotation_file = f"{args.root}/{dataset_type}-annotations-bbox.csv"
if not os.path.exists(annotation_file):
url = f"https://storage.googleapis.com/openimages/2018_04/{dataset_type}/{dataset_type}-annotations-bbox.csv"
logging.warning(f"Download {url}.")
http_download(url, annotation_file)
logging.warning(f"Read annotation file {annotation_file}")
# parse the annotations and filter by the class names
annotation_set = pd.read_csv(annotation_file)
annotation_set = pd.merge(annotation_set, class_descriptions, left_on="LabelName", right_on="id", how="inner")
# remove drawings and depictions
if not args.include_depiction:
annotation_set = annotation_set.loc[annotation_set['IsDepiction'] != 1, :]
annotations[dataset_type] = annotation_set
images[dataset_type] = annotation_set['ImageID'].unique()
logging.warning(f"Available {dataset_type} images: {len(images[dataset_type])}")
logging.warning(f"Available {dataset_type} boxes: {len(annotations[dataset_type])}\n")
# get the total number of images / annotations
total_images, total_annotations = get_totals(dataset_types, images, annotations)
logging.warning(f"Total available images: {total_images}")
logging.warning(f"Total available boxes: {total_annotations}\n")
# limit the total number of images (if needed)
if args.max_images > 0 and total_images > args.max_images:
for d in dataset_types:
max_images = int(args.max_images * (len(images[d]) / total_images))
images[d] = np.random.permutation(images[d])[:max_images]
annotations[d] = annotations[d].loc[annotations[d]['ImageID'].isin(images[d]), :]
logging.warning(f"Limiting {d} dataset to: {len(images[d])} images ({len(annotations[d])} boxes)")
total_images, total_annotations = get_totals(dataset_types, images, annotations)
# limit the number of annotations per class
if args.max_annotations_per_class > 0:
for d in dataset_types:
limited_images = []
limited_annotations = []
for class_name in class_names:
class_annotations = annotations[d][(annotations[d]['ClassName'] == class_name)]
class_images = class_annotations['ImageID'].unique()
if len(class_annotations) > args.max_annotations_per_class:
class_annotations = class_annotations.sample(n=args.max_annotations_per_class)
class_images = class_annotations['ImageID'].unique()
logging.warning(f"Limiting '{class_name}' in {d} dataset to: {len(class_annotations)} boxes ({len(class_images)} images)")
limited_images.append(class_images)
limited_annotations.append(class_annotations)
images[d] = np.concatenate(limited_images)
annotations[d] = pd.concat(limited_annotations)
total_images, total_annotations = get_totals(dataset_types, images, annotations)
logging.warning(f"Total images after limiting annotations per-class: {total_images}")
logging.warning(f"Total boxes after limiting annotations per-class: {total_annotations}\n")
# print out class statistics
for dataset_type in dataset_types:
print("\n-------------------------------------\n '{:s}' set statistics\n-------------------------------------".format(dataset_type))
print(" Image count: {:d}".format(len(images[dataset_type])))
print(" Bounding box count: {:d}".format(len(annotations[dataset_type])))
print(" Bounding box distribution: ")
log_counts(annotations[dataset_type]['ClassName'])
#print(" Approximate image stats: ")
#log_counts(annotations[dataset_type].drop_duplicates(["ImageID", "ClassName"])["ClassName"])
print(" ")
print("\n-------------------------------------\n Overall statistics\n-------------------------------------".format(dataset_type))
print(" Image count: {:d}".format(total_images))
print(" Bounding box count: {:d}\n".format(total_annotations))
if args.stats_only:
sys.exit(0)
# save our selected annotations and build the image list
image_files = []
for dataset_type in dataset_types:
sub_annotation_file = f"{args.root}/sub-{dataset_type}-annotations-bbox.csv"
logging.warning(f"Saving '{dataset_type}' data to {sub_annotation_file}.")
annotations[dataset_type].to_csv(sub_annotation_file, index=False)
image_files.extend(f"{dataset_type}/{id}.jpg" for id in images[dataset_type])
logging.warning(f"Starting to download {len(image_files)} images.")
batch_download(bucket, image_files, args.root, args.num_workers, args.retry)
logging.warning("Task Done.")