-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
232 lines (183 loc) · 8.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import sys
import time
import glob
import numpy as np
import torch
import logging
import argparse
import torch.nn as nn
import torch.utils
import torch.backends.cudnn as cudnn
import joint_network as models
from dataset import OneHopDataset
from torch.utils.data import Dataset, DataLoader
import shutil
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith('__')
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser("training")
parser.add_argument('arch', metavar='ARCH', default='vis_dagnn',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: vis_dagnn)')
parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.0005, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=0, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=3, help='num of training epochs')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--decreasing_lr', default='5,10,15', help='decreasing strategy')
parser.add_argument('--K', type=int, default=3, help='filter length')
parser.add_argument('--vinit', type=float, default=3.0, help='maximum intial velocity')
parser.add_argument('--radius', type=float, default=1.5, help='communication radius')
parser.add_argument('--F', type=int, default=24, help='number of feature dimension')
parser.add_argument('--comm-model', default='disk', choices=['disk', 'knn'], help='communication model')
parser.add_argument('--K-neighbor', type=int, default=10, help='number of KNN neighbors')
parser.add_argument('--mode', type=str, default='optimal', choices=['optimal', 'local', 'loc_dagnn', 'vis_dagnn', 'vis_grnn'])
args = parser.parse_args()
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
model = models.__dict__[args.arch](n_vis_out=args.F, K=args.K)
model = model.cuda()
train_criterion = torch.nn.SmoothL1Loss()
criterion = torch.nn.SmoothL1Loss() #torch.nn.MSELoss(reduction='mean')
train_criterion = train_criterion.cuda()
criterion = criterion.cuda()
train_criterion = train_criterion.cuda()
criterion = criterion.cuda()
decreasing_lr = list(map(int, args.decreasing_lr.split(',')))
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay
)
if args.comm_model == 'disk':
f_name = '{}_K_{}_n_vis_{}_R_{}_vinit_{}_comm_model_{}.pkl'.format(args.mode, args.K, args.F, args.radius, args.vinit, args.comm_model)
else:
f_name = '{}_K_{}_n_vis_{}_vinit_{}_comm_model_{}_K_neighbor_{}.pkl'.format(args.mode, args.K, args.F, args.vinit, args.comm_model, args.K_neighbor)
drone_dataset = OneHopDataset(f_name=f_name, K=args.K)
num_train = len(drone_dataset)
indices = list(range(num_train))
split = int(np.floor(0.9 * num_train))
train_queue = torch.utils.data.DataLoader(drone_dataset,batch_size=args.batch_size, num_workers=1, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True)
valid_queue = torch.utils.data.DataLoader(drone_dataset,batch_size=1, num_workers=2, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True)
print('Training Joint Network')
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
for epoch in range(args.epochs):
#scheduler.step()
#logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
train_loss = train_joint(train_queue, model, train_criterion, optimizer)
valid_loss = infer_joint(valid_queue, model, criterion)
if args.comm_model == 'disk':
checkpoint_path = 'checkpoint_all_{}_{}_K_{}_n_vis_{}_R_{}_vinit_{}_comm_model_{}.tar'.format(args.mode, args.arch, args.K, args.F, args.radius, args.vinit, args.comm_model)
else:
checkpoint_path = 'checkpoint_all_{}_{}_K_{}_n_vis_{}_vinit_{}_comm_model_{}_K_neighbor_{}.tar'.format(args.mode, args.arch, args.K, args.F, args.vinit, args.comm_model, args.K_neighbor)
#checkpoint_path = 'checkpoint_all_vis_{}_{}_latest.tar'.format(args.F, args.arch)
if True:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'loss': valid_loss,
}, filename=checkpoint_path)
best_valid_loss = valid_loss
print('epoch ' + str(epoch) + ' train loss ' + str(train_loss) + ' valid loss ' + str(valid_loss))
def train_joint(train_queue, model, criterion, optimizer):
objs = AvgrageMeter()
model.train()
print('len of train queue = {}'.format(len(train_queue)))
total_loss = 0
for step, sample_batched in enumerate(train_queue, 0):
x_img = sample_batched['x_img'].float().cuda().squeeze(0)
x_agg = sample_batched['x_agg'].float().cuda().squeeze(0)
a_nets = sample_batched['anets'].float().cuda().squeeze(0)
actions = sample_batched['actions'].float().cuda().squeeze(0)
if args.arch == 'vis_grnn':
input_state = torch.from_numpy(np.zeros((x_img.shape[0], args.F))).float().cuda()
pred_agg, pred = model(x_img, a_nets, input_state)
elif args.arch == 'loc_dagnn':
pred = model(x_agg, a_nets)
else:
pred_agg, pred = model(x_img, a_nets)
loss = criterion(pred, actions)
#print('loss = {}'.format(loss))
total_loss += loss
if step % 1 == 0:
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
total_loss = 0
n = pred.size(0)
objs.update(loss.item(), n)
if step % args.report_freq == 0:
print('-----')
print('train step ' + str(step) + ' loss ' + str(objs.avg))
#print('pred = {}'.format(pred))
#print('actions = {}'.format(actions))
print('-----')
return objs.avg
def infer_joint(valid_queue, model, criterion):
objs = AvgrageMeter()
model.eval()
for step, sample_batched in enumerate(valid_queue, 0):
x_img = sample_batched['x_img'].float().cuda().squeeze(0)
x_agg = sample_batched['x_agg'].float().cuda().squeeze(0)
a_nets = sample_batched['anets'].float().cuda().squeeze(0)
actions = sample_batched['actions'].float().cuda().squeeze(0)
if args.arch == 'vis_grnn':
input_state = torch.from_numpy(np.zeros((x_img.shape[0], args.F))).float().cuda()
_, pred = model(x_img, a_nets, input_state)
elif args.arch == 'loc_dagnn':
pred = model(x_agg, a_nets)
else:
_, pred = model(x_img, a_nets)
loss = criterion(pred, actions)
n = pred.size(0)
objs.update(loss.item(), n)
if step % args.report_freq == 0:
print('-----')
print('valid step ' + str(step) + ' loss ' + str(objs.avg))
print('-----')
return objs.avg
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if __name__ == '__main__':
main()