-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·970 lines (850 loc) · 40.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import sys
import time
sys.path.insert(1, 'src')
_TRAIN_START_TIME = time.time()
import argparse
import json
import logging
import math
import os
import random
from itertools import chain
from pathlib import Path
import datasets
import torch
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
SchedulerType,
default_data_collator,
get_scheduler,
)
from utils.cache_utils import DynamicCache
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from utils.global_vars import get_args, set_args
from peft import LoraConfig, get_peft_model
from llama import LlamaConfig, LlamaForCausalLM
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.36.0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
import datetime
# torch.distributed.init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=108000))
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task")
parser.add_argument('--method', choices=['hh', 'conv'])
parser.add_argument('--mem_size', type=int, default=128)
parser.add_argument('--local_len', type=int, default=0)
parser.add_argument('--hh_keep_rate', type=float, default=0.5)
parser.add_argument('--n_convlayer', type=int, default=1)
parser.add_argument('--kernel_size', type=int, default=21)
parser.add_argument('--hidden_act', default='relu')
parser.add_argument('--expand', type=int, default=1)
parser.add_argument('--eval_interval', type=int, default=20)
parser.add_argument('--eval_iter', type=int)
parser.add_argument('--stream_tokenizer', action='store_true')
parser.add_argument('--normalizer_init', type=float, default=0.5)
parser.add_argument('--rope_change', action='store_true')
parser.add_argument('--lora_finetuning', action='store_true')
parser.add_argument('--memory_lr_scale', type=float, default=1)
parser.add_argument('--norm_lr_scale', type=float, default=1)
parser.add_argument('--lora_lr_scale', type=float, default=1)
parser.add_argument('--exit-after-steps', type=int)
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--checkpoint_duration_in_mins', type=int, default=215)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv, txt or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv, txt or a json file containing the validation data."
)
parser.add_argument(
"--validation_split_percentage",
default=5,
help="The percentage of the train set used as validation set in case there's no validation split",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=False,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=1,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
parser.add_argument(
'--clean_period', type=int
)
parser.add_argument(
"--block_size",
type=int,
default=None,
help=(
"Optional input sequence length after tokenization. The training dataset will be truncated in block of"
" this size for training. Default to the model max input length for single sentence inputs (take into"
" account special tokens)."
),
)
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.",
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument(
"--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--trust_remote_code",
type=bool,
default=False,
help=(
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--low_cpu_mem_usage",
action="store_true",
help=(
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"If passed, LLM loading time and RAM consumption will be benefited."
),
)
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`train_file` should be a csv, json or txt file.")
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`validation_file` should be a csv, json or txt file.")
if args.push_to_hub:
if args.output_dir is None:
raise ValueError("Need an `output_dir` to create a repo when `--push_to_hub` is passed.")
set_args(args)
return args
def main():
args = parse_args()
print(args)
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[:{args.validation_split_percentage}%]",
)
raw_datasets["train"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[{args.validation_split_percentage}%:]",
)
else:
data_files = {}
dataset_args = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{args.validation_split_percentage}%]",
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{args.validation_split_percentage}%:]",
**dataset_args,
)
if args.stream_tokenizer:
# data streaming
args.dataset_num_shards = 1024
raw_datasets = datasets.IterableDatasetDict({
"train": raw_datasets["train"].to_iterable_dataset(num_shards=args.dataset_num_shards),
"validation": raw_datasets["validation"].to_iterable_dataset(num_shards=args.dataset_num_shards),
})
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(
args.config_name,
trust_remote_code=args.trust_remote_code,
)
elif args.model_name_or_path:
config = LlamaConfig.from_pretrained(
args.model_name_or_path,
trust_remote_code=args.trust_remote_code,
attn_implementation="eager",
)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code
)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
if args.rope_change:
if accelerator.is_main_process:
print('Change Rope Configuration: type: Linear, factor: %f'%(args.block_size * args.clean_period/config.max_position_embeddings))
config.rope_scaling = {'type': 'linear',
'factor': (args.block_size * args.clean_period/config.max_position_embeddings)}
if args.lora_finetuning:
base_model = LlamaForCausalLM.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
attn_implementation="eager"
)
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(base_model, config)
else:
base_model = None
model = LlamaForCausalLM.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
attn_implementation="eager"
)
else:
raise NotImplementedError
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config, trust_remote_code=args.trust_remote_code)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
return tokenizer(examples[text_column_name])
if args.stream_tokenizer:
with accelerator.main_process_first():
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
)
else:
with accelerator.main_process_first():
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
block_size = args.block_size * args.clean_period
if args.clean_period != 1:
print(f'Per sample length {block_size}, can be truncated into {args.clean_period} parts.')
assert block_size < tokenizer.model_max_length
# if args.block_size is None:
# block_size = tokenizer.model_max_length
# if block_size > config.max_position_embeddings:
# logger.warning(
# f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
# f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx."
# )
# block_size = min(1024, config.max_position_embeddings)
# else:
# if args.block_size > tokenizer.model_max_length:
# logger.warning(
# f"The block_size passed ({args.block_size}) is larger than the maximum length for the model "
# f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
# )
# block_size = min(args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/process#map
if args.stream_tokenizer:
with accelerator.main_process_first():
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
)
else:
with accelerator.main_process_first():
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
train_dataset = lm_datasets["train"]
eval_dataset = lm_datasets["validation"]
# # Log a few random samples from the training set:
# for index in random.sample(range(len(train_dataset)), 3):
# logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
train_dataloader = DataLoader(
train_dataset.shuffle(), collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(
eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size
)
# customize optimzer
no_decay = ["bias", "batch_norm.weight"]
memory_params_nd, memory_params, norm_params, lora_params = [], [], [], []
for n, p in model.named_parameters():
if 'memory_saver' in n and not any(nd in n for nd in no_decay):
p.requires_grad_(True)
memory_params.append(p)
logger.info('Trainable Parameter: %s, lr scale %f, weight_decay'%(n, args.memory_lr_scale))
elif 'memory_saver' in n and any(nd in n for nd in no_decay):
p.requires_grad_(True)
memory_params_nd.append(p)
logger.info('Trainable Parameter: %s, lr scale %f, no weight_decay'%(n, args.memory_lr_scale))
elif 'embed' in n or 'norm' in n:
p.requires_grad_(True)
norm_params.append(p)
logger.info('Trainable Parameter: %s, lr scale %f, weight_decay'%(n, args.norm_lr_scale))
elif 'lora' in n:
p.requires_grad_(True)
lora_params.append(p)
logger.info('Trainable Parameter: %s, lr scale %f, weight_decay'%(n, args.lora_lr_scale))
else:
p.requires_grad_(False)
if args.lora_finetuning:
model.print_trainable_parameters()
optimizer_grouped_parameters = [
{"params": memory_params_nd, "weight_decay": 0.0, "lr": args.learning_rate * args.memory_lr_scale},
{"params": memory_params, "weight_decay": args.weight_decay, "lr": args.learning_rate * args.memory_lr_scale},
{"params": norm_params, "weight_decay": args.weight_decay, "lr": args.learning_rate * args.norm_lr_scale},
{"params": lora_params, "weight_decay": args.weight_decay, "lr": args.learning_rate * args.lora_lr_scale},
]
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
optimizer = torch.optim.AdamW(optimizer_grouped_parameters)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
# num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
# if args.max_train_steps is None:
# args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# overrode_max_train_steps = True
if not args.lora_finetuning and args.method=='hh':
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
evaluate(model, eval_dataloader, accelerator, logger, 0, verbose=True)
sys.exit()
assert args.max_train_steps is not None
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
# NOTE added by Ruisi: please check `accelerator.num_processes`. might needs to modify to args.gradient_accumulation_steps.
# (depend on whether using accelerate package)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# if base_model is not None:
# accelerator.register_for_checkpointing(base_model)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# # We need to recalculate our total training steps as the size of the training dataloader may have changed.
# num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
# if overrode_max_train_steps:
# args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# # Afterwards we recalculate our number of training epochs
# args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("clm_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
# logger.info(f" Num examples = {len(train_dataset)}")
# logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {int(total_batch_size/args.clean_period)}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
# progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
exit_checkpointing_flag = False
# Potentially load in the weights and states from a previous save
if args.auto_resume:
ckpt_dir = os.path.join(args.output_dir)
checkpoint_names = []
if os.path.isdir(ckpt_dir):
is_ckpt_folder = lambda fn: fn.startswith('step_')
checkpoint_names = [fn for fn in os.listdir(ckpt_dir) if is_ckpt_folder(fn)]
if len(checkpoint_names) > 0:
checkpoint_names = sorted(checkpoint_names, key=lambda p: int(p.split('_')[1]))
args.resume_from_checkpoint = os.path.join(ckpt_dir, checkpoint_names[-1])
logger.info('Detect checkpoint from: %s'%args.resume_from_checkpoint, main_process_only=True)
completed_steps = int(checkpoint_names[-1].split("_")[1])
else:
logger.info('No checkpoint detected: %s'%ckpt_dir, main_process_only=True)
args.resume_from_checkpoint = None
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
# update the progress_bar if load from checkpoint
# progress_bar.update(completed_steps)
while completed_steps < args.max_train_steps:
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, completed_steps)
else:
active_dataloader = train_dataloader
losses = []
for step, batch in enumerate(active_dataloader):
past_key_values = DynamicCache()
batch_loss = {'lm': []}
for seq_idx in range(args.clean_period):
with accelerator.accumulate(model):
batch_item = {}
batch_item['use_cache'] = True
start, end = seq_idx * args.block_size, (seq_idx+1) * args.block_size
for key in batch:
key_start = 0 if key=='attention_mask' and batch_item['use_cache'] else start
batch_item[key] = batch[key][:, key_start: end]
batch_item['past_key_values'] = past_key_values
outputs = model(**batch_item)
loss = outputs.loss
past_key_values = outputs.past_key_values
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
batch_loss['lm'].append(loss.item())
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
loss = torch.tensor(batch_loss['lm'], device=loss.device).mean()
losses.append(accelerator.gather(loss.repeat(args.per_device_train_batch_size)))
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# progress_bar.update(1)
completed_steps += 1
if completed_steps % args.eval_interval == 0:
evaluate(model, eval_dataloader, accelerator, logger, completed_steps)
losses = torch.cat(losses)
try:
train_loss = torch.mean(losses)
train_perplexity = math.exp(train_loss)
except OverflowError:
train_perplexity = float("inf")
logger.info(f"step {completed_steps}: perplexity: {train_perplexity} eval_loss: {train_loss}")
losses = []
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
# accelerator.wait_for_everyone()
# unwrapped_model = accelerator.unwrap_model(model)
# unwrapped_model.save_pretrained(
# args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
# )
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if not exit_checkpointing_flag and args.checkpoint_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = torch.cuda.IntTensor(
[train_time > args.checkpoint_duration_in_mins])
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
logger.info('checkpointing program after {} minutes'.format(train_time))
exit_checkpointing_flag = True
sys.exit()
if args.exit_after_steps is not None and completed_steps % args.exit_after_steps == 0:
sys.exit()
if completed_steps >= args.max_train_steps:
break
if args.with_tracking:
accelerator.log(
{
"perplexity": perplexity,
"eval_loss": eval_loss,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if args.lora_finetuning:
unwrapped_model = unwrapped_model.merge_and_unload()
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
# with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
# json.dump({"perplexity": perplexity}, f)
def print_str(str, file, accelerator):
logger.info(str)
if accelerator.is_main_process:
with open(file, 'a') as f:
print(str, file=f)
def evaluate(model, eval_dataloader, accelerator, logger, completed_step, verbose=False):
args = get_args()
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
past_key_values = DynamicCache()
batch_loss = {'lm': []}
if verbose:
if accelerator.is_main_process:
print(f'Evaluating Step {step} / {args.eval_iter if args.eval_iter is not None else 0}')
with torch.no_grad():
for seq_idx in range(args.clean_period):
batch_item = {}
batch_item['use_cache'] = True
start, end = seq_idx * args.block_size, (seq_idx+1) * args.block_size
for key in batch:
key_start = 0 if key=='attention_mask' and batch_item['use_cache'] else start
batch_item[key] = batch[key][:, key_start: end]
batch_item['past_key_values'] = past_key_values
outputs = model(**batch_item)
loss = outputs.loss
past_key_values = outputs.past_key_values
batch_loss['lm'].append(loss.item())
loss = torch.tensor(batch_loss['lm'], device=loss.device).mean()
# losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size)))
losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size)))
if args.eval_iter is not None and step==args.eval_iter:
break
if verbose and step % 200 ==0 :
losses_temp = torch.cat(losses)
try:
eval_loss = torch.mean(losses_temp)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(f"Evaluation: step {completed_step}: perplexity: {perplexity} eval_loss: {eval_loss}")
losses = torch.cat(losses)
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(f"Evaluation: step {completed_step}: perplexity: {perplexity} eval_loss: {eval_loss}")
if __name__ == "__main__":
main()