-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworstcase_lineartime_selection.cpp
105 lines (91 loc) · 2.64 KB
/
worstcase_lineartime_selection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// C++ implementation of worst case linear time algorithm
// to find k'th smallest element
#include<iostream>
#include<algorithm>
#include<climits>
using namespace std;
int partition(int arr[], int l, int r, int k);
// A simple function to find median of arr[]. This is called
// only for an array of size 5 in this program.
int findMedian(int arr[], int n)
{
sort(arr, arr + n); // Sort the array
return arr[n / 2]; // Return middle element
}
// Returns k'th smallest element in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r - l + 1; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5, calculate median
// of every group and store it in median[] array.
int i;
int* median = new int[(n + 4) / 5]; // There will be floor((n+4)/5) groups;
for (i = 0; i < n / 5; i++)
median[i] = findMedian(arr + l + i * 5, 5); // 각그룹의 중앙값을 median 배열에 넣음
if (i * 5 < n) //For last group with less than 5 elements
{
median[i] = findMedian(arr + l + i * 5, n % 5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
int medOfMed = (i == 1) ? median[i - 1] :
kthSmallest(median, 0, i - 1, i / 2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = partition(arr, l, r, medOfMed);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
if (pos - l > k - 1) // If position is more, recur for left
return kthSmallest(arr, l, pos - 1, k);
delete[]median;
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, (k -1) - (pos - l));
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// It searches for x in arr[l..r], and partitions the array
// around x.
int partition(int arr[], int l, int r, int x)
{
// Search for x in arr[l..r] and move it to end
int i;
for (i = l; i < r; i++)
if (arr[i] == x)
break;
swap(&arr[i], &arr[r]);
// Standard partition algorithm
i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j] <= x)
{
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int n = sizeof(arr) / sizeof(arr[0]), k = 3;
cout << "K'th smallest element is "
<< kthSmallest(arr, 0, n - 1, k);
return 0;
}