generated from fspoettel/advent-of-code-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
16.rs
207 lines (174 loc) · 6.48 KB
/
16.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use itertools::Itertools;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap, HashSet};
advent_of_code::solution!(16);
const DIRECTIONS: [(isize, isize); 4] = [
(0, -1),
(1, 0),
(0, 1),
(-1, 0),
];
#[derive(Debug, Eq, PartialEq, Hash, Copy, Clone)]
struct Node(usize, usize, NodeType);
#[derive(Debug, Eq, PartialEq, Hash, Copy, Clone)]
enum NodeType {
Empty,
Wall,
}
#[derive(Debug, Eq, PartialEq, Hash, Copy, Clone)]
struct State {
node: Node,
cost: u32,
direction: (isize, isize),
}
impl Ord for State {
fn cmp(&self, other: &Self) -> Ordering {
other.cost.cmp(&self.cost)
}
}
impl PartialOrd for State {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
fn parse(input: &str) -> (Node, Node, Vec<Vec<Node>>) {
let (mut source_node, mut target_node) = (Node(0, 0, NodeType::Empty), Node(0, 0, NodeType::Empty));
let nodes = input.lines()
.enumerate()
.map(|(y, line)| {
let mut local_source_node = None;
let mut local_target_node = None;
let nodes = line.char_indices().map(|(x, char)| {
match char {
'#' => Node(x, y, NodeType::Wall),
_ => {
let node = Node(x, y, NodeType::Empty);
if char == 'S' {
local_source_node = Some(node);
} else if char == 'E' {
local_target_node = Some(node);
}
node
},
}
}).collect_vec();
if let Some(node) = local_source_node {
source_node = node;
}
if let Some(node) = local_target_node {
target_node = node;
}
nodes
})
.collect_vec();
(source_node, target_node, nodes)
}
fn find_shortest_path(source: Node, target: Node, nodes: Vec<Vec<Node>>) -> Option<u32> {
let mut dist = HashMap::new();
let mut heap = BinaryHeap::new();
dist.insert(source, 0);
heap.push(State { node: source, cost: 0, direction: (1, 0) });
while let Some(State { node, cost, direction }) = heap.pop() {
if node == target {
return Some(cost);
}
if cost > *dist.get(&node).unwrap_or(&u32::MAX) {
continue;
}
for new_direction in &DIRECTIONS {
let Some(neighbor) = offset(&(node.0, node.1), new_direction)
.map(|(x, y)| nodes[y][x])
.filter(|node| node.2 != NodeType::Wall) else { continue };
let new_cost = cost + 1 + (1000 * u32::from(*new_direction != direction));
let next = State { node: neighbor, cost: new_cost, direction: *new_direction };
if next.cost < *dist.get(&next.node).unwrap_or(&u32::MAX) {
heap.push(next);
dist.insert(next.node, next.cost);
}
}
}
None
}
fn find_all_shortest_paths(source: Node, target: Node, nodes: Vec<Vec<Node>>) -> Option<u32> {
let mut dist = HashMap::new();
let mut heap = BinaryHeap::new();
let mut paths: HashMap<_, Vec<_>> = HashMap::new();
dist.insert((source, (1, 0)), 0);
dist.insert((source, (0, -1)), 1000);
heap.push(State { node: source, cost: 0, direction: (1, 0) });
heap.push(State { node: source, cost: 1000, direction: (0, -1) });
while let Some(State { node, cost, direction }) = heap.pop() {
if node == target {
break;
}
if cost > *dist.get(&(node, direction)).unwrap_or(&u32::MAX) {
continue;
}
let Some(neighbor) = offset(&(node.0, node.1), &direction)
.map(|(x, y)| nodes[y][x])
.filter(|node| node.2 != NodeType::Wall) else { continue };
for new_direction in &DIRECTIONS {
if *new_direction == (-direction.0, -direction.1) {
continue;
}
let new_cost = cost + 1 + (1000 * u32::from(*new_direction != direction));
let next = State { node: neighbor, cost: new_cost, direction: *new_direction };
match next.cost.cmp(dist.get(&(next.node, *new_direction)).unwrap_or(&u32::MAX)) {
Ordering::Less => {
heap.push(next);
dist.insert((next.node, next.direction), next.cost);
paths.insert((next.node, next.direction), vec![(node, direction)]);
}
Ordering::Equal => paths.entry((next.node, next.direction)).or_default().push((node, direction)),
_ => {}
}
}
}
let mut best_path_nodes = HashSet::new();
if !dist.contains_key(&(target, (1, 0))) && !dist.contains_key(&(target, (0, -1))) {
return None;
}
let mut stack = vec![(target, (1, 0))];
if dist.contains_key(&(target, (0, -1))) {
stack.push((target, (0, -1)));
}
while let Some((node, direction)) = stack.pop() {
best_path_nodes.insert(node);
let Some(prev_nodes) = paths.get(&(node, direction)) else { continue };
for &(prev_node, prev_direction) in prev_nodes {
stack.push((prev_node, prev_direction));
}
}
Some(best_path_nodes.len() as u32)
}
fn offset(pos: &(usize, usize), direction: &(isize, isize)) -> Option<(usize, usize)> {
let x = pos.0.checked_add_signed(direction.0)?;
let y = pos.1.checked_add_signed(direction.1)?;
Some((x, y))
}
pub fn part_one(input: &str) -> Option<u32> {
let (source_node, target_node, nodes) = parse(input);
find_shortest_path(source_node, target_node, nodes)
}
pub fn part_two(input: &str) -> Option<u32> {
let (source_node, target_node, nodes) = parse(input);
find_all_shortest_paths(source_node, target_node, nodes)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_part_one() {
let result = part_one(&advent_of_code::template::read_file_part("examples", DAY, 1));
assert_eq!(result, Some(7036));
let result = part_one(&advent_of_code::template::read_file_part("examples", DAY, 2));
assert_eq!(result, Some(11048));
}
#[test]
fn test_part_two() {
let result = part_two(&advent_of_code::template::read_file_part("examples", DAY, 1));
assert_eq!(result, Some(45));
let result = part_two(&advent_of_code::template::read_file_part("examples", DAY, 2));
assert_eq!(result, Some(64));
}
}