-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_weight_utils.py
400 lines (340 loc) · 13.2 KB
/
model_weight_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import numpy as np
import copy
def gradients(prev_weights, new_weights):
"""
gradients here should be added to the model, unlike the its conventional mathematical definition
"""
gradients = []
for i in range(len(prev_weights)):
gradients.append(new_weights[i] - prev_weights[i])
return gradients
def m_gradients(prev_weights, new_weights):
"""
mathmatical gradients, which should be subtracted from the model params
"""
gradients = []
for i in range(len(prev_weights)):
gradients.append(prev_weights[i] - new_weights[i])
return gradients
def add_weights(w1, w2):
if w1 == None:
return w2
res = []
for i in range(len(w1)):
res.append(w1[i] + w2[i])
return res
def multiply_weights(w, num):
res = []
for i in range(len(w)):
res.append(w[i] * num)
return res
def avg_weights(my_weights, other_weights):
if my_weights == None:
return other_weights
weights = [my_weights, other_weights]
agg_weights = list()
coeff = 0.5
for weights_list_tuple in zip(*weights):
agg_weights.append(np.array([np.average(np.array(w), axis=0, weights=[coeff, 1.-coeff]) for w in zip(*weights_list_tuple)]))
return agg_weights
def enlarge_weights(target, source):
n = len(target)
if n != len(source):
raise ValueError("The number of layers do not match!")
for i in range(n):
rep_put_weights(target[i], source[i])
# adaptively put repeated weights of source to target
def rep_put_weights(target, source):
if len(target.shape) == 2:
tr, tc = target.shape
sr, sc = source.shape
if tr != sr:
if tc != sc:
rep_put_diag(target, source)
else:
rep_put_2d(target, source)
else:
if tc != sc:
rep_put_2d(target, source)
else:
target[:] = source
elif len(target.shape) == 1:
rep_put_1d(target, source)
def rep_put_1d(target, arr):
tn = target.shape[0]
n = arr.shape[0]
for i in range(int(tn/n)):
for j in range(n):
target[j+i*n] = arr[j]
# repeatedlyh puts arr to target along one axis
def rep_put_2d(target, arr):
tn, tm = target.shape
n, m = arr.shape
if tn != n:
for i in range(int(tn/n)):
put(target, i*n, 0, arr)
elif tm != m:
for i in range(int(tm/m)):
put(target, 0, i*m, arr)
# repeatedly puts arr to target diagonally
def rep_put_diag(target, arr):
tn, tm = target.shape
n, m = arr.shape
for i in range(int(tn/n)):
put(target, n*i, m*i, arr)
def put(target, row, col, arr):
n, m = arr.shape
for i in range(n):
for j in range(m):
target[row+i][col+j] = arr[i][j]
class SelectWeightsAdv():
def __init__(self):
self.masks = []
self.count = []
def get_probs(self, target):
# get probability for selecting weights
cnt_sum = np.sum(target, axis=0)
probs = (np.max(cnt_sum) - cnt_sum) + 0.01
probs /= np.sum(probs)
return probs
def select_weights(self, target, select):
self.select = copy.deepcopy(select)
self.target = copy.deepcopy(target)
# if len(self.count) == 0:
# for w in target:
# self.count.append(np.zeros(w.shape))
# reset mask
self.masks = []
n = len(self.target)
if n != len(self.select):
raise ValueError("The number of layers do not match!")
for i in range(n):
mask = np.zeros(self.target[i].shape, dtype='bool')
if (i == 0): # input layer
probs = self.get_probs(self.target[i])
cols = np.random.choice(np.arange(self.target[i].shape[1]),
size=self.select[i].shape[1], replace=False)
for r in np.arange(self.target[i].shape[0]):
for c in cols:
mask[r][c] = True
self.select[i] = self.target[i][mask].reshape(self.select[i].shape)
elif i == n-2: # output weights
rows = cols
for r in rows:
for c in np.arange(self.target[i].shape[1]):
mask[r][c] = True
self.select[i] = self.target[i][mask].reshape(self.select[i].shape)
elif i == n-1: # output bias
mask |= True
elif len(self.target[i].shape) == 2: # weights
rows = cols
probs = self.get_probs(self.target[i])
cols = np.random.choice(np.arange(self.target[i].shape[1]),
size=self.select[i].shape[1],replace=False)
for r in rows:
for c in cols:
mask[r][c] = True
self.select[i] = self.target[i][mask].reshape(self.select[i].shape)
elif len(self.target[i].shape) == 1: # bias
for c in cols:
mask[c] = True
self.select[i] = self.target[i][mask]
self.masks.append(mask)
# for i in range(len(self.masks)):
# self.count[i] += self.masks[i]
return self.select
def get_selected(self):
return self.select
def update_target(self, select):
for i in range(len(select)):
self.target[i][self.masks[i]] = select[i].ravel()
return self.target
def get_target_from_selected(self, weights):
res = []
for i in range(len(weights)):
w = np.zeros(shape=self.target[i].shape)
w[self.masks[i]] = weights[i].ravel()
res.append(w)
return res
def get_selected_adam_optimizer_weights(self, weights):
res = []
res.append(weights[0]) # iter num
for i in range(1, len(weights)):
if i <= len(self.masks):
res.append(weights[i][self.masks[i-1]].reshape(self.select[i-1].shape))
else:
res.append(weights[i][self.masks[i-len(self.masks)-1]].reshape(self.select[i-len(self.masks)-1].shape))
return res
def get_target_adam_optimizer_weights(self, weights):
res = []
res.append(weights[0]) # iter num
for i in range(1, len(weights)):
if i <= len(self.masks):
idx = i-1
else:
idx = i-len(self.masks)-1
w = np.zeros(shape=self.target[idx].shape)
w[self.masks[idx]] = weights[i].ravel()
res.append(w)
return res
class MomentumSelectWeights(SelectWeightsAdv):
def __init__(self):
super().__init__()
def get_target_from_selected_w_momentum(self, momentum, weights):
res = []
for i in range(len(weights)):
w = copy.deepcopy(momentum[i])
w[self.masks[i]] = weights[i].ravel()
res.append(w)
return res
def get_target_from_selected_w_momentum_avg(self, momentum, weights):
res = []
for i in range(len(weights)):
w = copy.deepcopy(momentum[i])
w[self.masks[i]] = (w[self.masks[i]] + weights[i].ravel()) / 2
res.append(w)
return res
class SelectWeightsNoWeighting(SelectWeightsAdv):
def __init__(self):
super().__init__()
def get_probs(self, target):
probs = np.ones(target.shape[1])
probs /= np.sum(probs)
return probs
class SelectWeightsConv(SelectWeightsAdv):
def __init__(self):
super().__init__()
def select_weights(self, target, select):
self.masks = []
self.select = copy.deepcopy(select)
self.target = target
n = len(self.target)
if n != len(select):
print('target layers is {} while select is {}'.format(n, len(select)))
for w in self.target:
print(w.shape)
for w in select:
print(w.shape)
raise ValueError("The number of layers do not match!")
for i in range(n):
mask = np.zeros(self.target[i].shape, dtype='bool')
if i == 8: # flatten layer
cols = np.random.choice(np.arange(self.target[i].shape[1]), size=select[i].shape[1], replace=False)
depth = self.target[i-1].shape[0]
for f in filters:
for c in cols:
for ii in range(6):
for j in range(6):
mask[ii * 6 * depth + j * depth + f][c] = True
masked = self.target[i][mask]
self.select[i] = masked.reshape(select[i].shape)
elif i == 9: # flatten layer bias
for c in cols:
mask[c] = True
self.select[i] = self.target[i][mask]
elif i == 10: # dense layer
rows = cols
for r in rows:
for c in np.arange(self.target[i].shape[1]):
mask[r][c] = True
self.select[i] = self.target[i][mask].reshape(select[i].shape)
elif i == n-1: # output bias
mask |= True
elif i == 0: # first conv weights
filters = np.random.choice(np.arange(self.target[i].shape[3]), size=select[i].shape[3], replace=False)
for f in filters:
mask[:,:,:,f] = True
self.select[i] = self.target[i][mask].reshape(select[i].shape)
elif len(self.target[i].shape) == 4: # conv weights
prev_filters = filters
filters = np.random.choice(np.arange(self.target[i].shape[3]), size=select[i].shape[3], replace=False)
for f in filters:
for p in prev_filters:
mask[:,:,p,f] = True
self.select[i] = self.target[i][mask].reshape(select[i].shape)
elif len(self.target[i].shape) == 1: # bias
for f in filters:
mask[f] = True
self.select[i] = self.target[i][mask]
self.masks.append(mask)
return self.select
class MomentumSelectWeightsConv(SelectWeightsConv):
def __init__(self):
super().__init__()
def get_target_from_selected_w_momentum(self, momentum, weights):
res = []
for i in range(len(weights)):
w = copy.deepcopy(momentum[i])
w[self.masks[i]] = weights[i].ravel()
res.append(w)
return res
def get_target_from_selected_w_momentum_avg(self, momentum, weights):
res = []
for i in range(len(weights)):
w = copy.deepcopy(momentum[i])
w[self.masks[i]] = (w[self.masks[i]] + weights[i].ravel()) / 2
res.append(w)
return res
# adaptively select weights of target
def select_weights(target, select):
n = len(target)
if n != len(select):
raise ValueError("The number of layers do not match!")
for i in range(n):
if len(target[i].shape) == 2:
select[i], _ = select_2d(target[i], select[i])
elif len(target[i].shape) == 1:
select[i], _ = select_1d(target[i], select[i])
def select_2d(target, select):
mask = np.zeros(target.shape, dtype='bool')
rows = np.random.choice(np.arange(target.shape[0]), size=select.shape[0], replace=False)
cols = np.random.choice(np.arange(target.shape[1]), size=select.shape[1], replace=False)
for i in rows:
for j in cols:
mask[i][j] = True
return target[mask].reshape(select.shape), mask
def select_1d(target, select):
mask = np.zeros(target.shape[0], dtype='bool')
cols = np.random.choice(np.arange(target.shape[0]), size=select.shape[0], replace=False)
for i in cols:
mask[i] = True
return target[mask], mask
######
# for quantization
# https://github.com/sunjunaimer/LAQ/blob/master/NeurIPS2019:LAQ/LAQ.py
def vec_to_grad(vec, grads):
le = len(grads)
new_grad = []
cur = 0
for i in range(0, le):
s_sum = 1
for s in grads[i].shape:
s_sum *= s
new_grad.append(vec[cur:cur+s_sum].reshape(grads[i].shape))
cur += s_sum
return new_grad
def grad_to_vec(grads):
vec = np.array([])
g_numpy = [g.numpy() for g in grads]
for g in g_numpy:
vec = np.concatenate((vec, g.ravel()), axis=0)
return vec
def weights_to_vec(weights):
vec = np.array([])
w_numpy = [w for w in weights]
for w in weights:
vec = np.concatenate((vec, w.ravel()), axis=0)
return vec
# SL: quantize gradients (vec) based on prior quantized gradients (v2) according to the number of bits (b)
def quant_d(vec,v2,b):
n=len(vec)
r=max(abs(vec-v2))
delta=r/(np.floor(2**b)-1)
quantv=v2-r+2*delta*np.floor((vec-v2+r+delta)/(2*delta))
return quantv
def quant(vec, b):
n = len(vec)
max_val = max(abs(vec))
tau = max_val / (np.floor(2**b)-1)
quantv = 2 * tau * np.floor((vec + max_val + tau)/(2 * tau)) - max_val
return quantv