-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
83 lines (66 loc) · 2.32 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import random
import numpy as np
import argparse
import os
import sh
from loguru import logger
from data.dataloader import load_data
def run():
# Load configuration
args = load_config()
logger.add(os.path.join('logs', '{}.log'.format(args.dataset)), rotation="500 MB", level="INFO")
logger.info(args)
# Set seed
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
# Load dataset
train_data, _, query_data, query_targets, retrieval_data, retrieval_targets = load_data(args.dataset, args.root)
# Training
for code_length in args.code_length:
checkpoint = sh.train(
train_data,
query_data,
query_targets,
retrieval_data,
retrieval_targets,
code_length,
args.device,
args.topk,
)
logger.info('[code_length:{}][map:{:.4f}]'.format(code_length, checkpoint['map']))
torch.save(checkpoint, 'checkpoints/{}_code_{}_map_{:.4f}.pt'.format(args.dataset, code_length, checkpoint['map']))
def load_config():
"""
Load configuration.
Args
None
Returns
args(argparse.ArgumentParser): Configuration.
"""
parser = argparse.ArgumentParser(description='SH_PyTorch')
parser.add_argument('--dataset',
help='Dataset name.')
parser.add_argument('--root',
help='Path of dataset')
parser.add_argument('--code-length', default='8,16,24,32,48,64,96,128', type=str,
help='Binary hash code length.(default: 8,16,24,32,48,64,96,128)')
parser.add_argument('--topk', default=-1, type=int,
help='Calculate map of top k.(default: ALL)')
parser.add_argument('--gpu', default=None, type=int,
help='Using gpu.(default: False)')
parser.add_argument('--seed', default=3367, type=int,
help='Random seed.(default: 3367)')
args = parser.parse_args()
# GPU
if args.gpu is None:
args.device = torch.device("cpu")
else:
args.device = torch.device("cuda:%d" % args.gpu)
# Hash code length
args.code_length = list(map(int, args.code_length.split(',')))
return args
if __name__ == '__main__':
run()